
Applying Formal Evaluation to Worm Defense DesignRaman Sharykin Phillip A. PorrasDepartment of Computer Siene Computer Siene LaboratoryUniversity of Illinois Urbana-Champaign SRI International201 N Goodwin Avenue 333 Ravenswood AvenueUrbana, IL 61801 Menlo Park, CA 94025AbstratWe disuss the early insertion of formal analyses in distributed malware defense evaluation, andprovide an example method for applying an exeutable rewriting logi spei�ation to drive bothsimulation and property validation of a ollaborative group-based worm defense. An importantaspet of the algorithm under onsideration is its distributed and probabilisti nature, whih makesthe defense system harder to attak but unfortunately also ompliates the ability of designers tofully understand its behavioral properties. We demonstrate one approah to formally analyze ourase study worm defense algorithm, employing tools that failitate both statistial simulation andproperty validation. Our approah is posed as omplementary to the urrent pratie of informaldesign spei�ation and evaluation through network simulation.I. IntrodutionWith the inreasing importane and omplexity of distributed malware defense systems, theappliation of formal methods for understanding the dynamis of suh systems early in their designould prove highly valuable. However, to date formal analyses of malware defense algorithms havebeen extremely limited, with the vast majority of designers relying on informal or pseudoodespei�ations, network simulation, and funtional testing to assess their designs. One obstale tothe appliation of formal methods in this area is the diÆulty in determining a proper formalism toapply when evaluating a given malware defense algorithm. If an underlying formalism suh as Petrinets or disrete-time Markov hains is seleted, it may be ostly to swith to a di�erent formalismin ases where another formalism is later determined to be more appropriate in assessing ertainalgorithm properties.We present an approah to applying formal methods to the design of malware defenses usingrewriting logi [12℄. Rewriting logi allows an early insertion of formal methods, while not restritingthe designer to a narrow formalism. It has been shown that di�erent mathematial models an benaturally expressed in rewriting logi [11℄, [12℄. Formalisms based on rewriting logi an be onise,relatively intuitive, and well suited for speifying distributed onurrent systems with asynhronousommuniation in play. Rewriting logi spei�ations are exeutable in a rewriting-logi language,suh as Maude [8℄, whih allows one to simulate and adjust a malware defense spei�ation overvarious attak senarios very early in the design life yle. When the designer is satis�ed withthe spei�ation, an appropriate narrower formalism with a known representation in rewriting logian be used to assist in proving various ritial properties or to identify logial inonsistenies notdisernible through simulation. Maude itself supports assistane for formal proofs in rewriting logi[7℄.One a formalism is seleted, another important question is how to analyze the system duringearly development. A desirable method should be \lightweight," in that it should allow the designerto fous on the defense algorithm and its parameters. We prefer methods that allow us to rapidlyassess key behavioral properties and iterate the defense model under various operating assumptions,and to invest e�orts in more omplex formal validation proedures only later, when the designspae is narrowed. For our appliation of a malware defense system, we propose a simulation-based approah with a temporal quantitative language QuaTEx [1℄, whih we explain is well suitedto quantitatively assessing the behavior of stohasti systems, suh as malware defense protoolsunder a distributed attak.To illustrate our methodology we onsider a ase study involving a probabilisti worm defensealgorithm. The primary ontribution of this paper is to demonstrate a formal approah to analyzingthe behavioral properties of this peer-based distributed stohasti system in a malware defense



ontext, and to illustrate the types of seurity properties that we believe are appliable, here and withother malware defense algorithms, to investigation through formal analyses rather than simulation.The paper is organized as follows: Setion II introdues the illustrative worm defense system;Setion III explains how this system an be spei�ed using Maude rewriting logi; Setion IVexplains how a property an be spei�ed in QuaTEx and how it an be statistially analyzed usingVeStA; Setion V disusses example properties and introdues a property whih annot be inferredfrom analysis of a propagation urve; �nally, Setion VI presents our �ndings while shaping ouralgorithm and provides tehnial results.II. An Example Worm Defense SystemTo motivate our presentation, we briey present an example, previously published, group-basedworm defense algorithm [4℄. Our intent here is to desribe the basis of the algorithm to drive ourformal modeling disussion, and refer the reader to the publiation for more information regardingthe algorithm details and eÆay arguments.Under this group defense algorithm, loal area networks (LANs) ollaborate in groups, where eahLAN's egress router informs its group partners when it produes loal alerts assoiated with potentialworm infetion ativity. When a LAN reeives orroborating worm reports from N or more soures,it enters a defensive �ltering posture. The algorithm is similar to the peer alert sharing protoolspresented in [2℄ and [13℄, but here alert prodution is driven by a onnetion rate-limiting system,suh as that presented in [16℄. Our onnetion rate-limiting omponent produes an alarm whenit observes an internal host that attempts to onnet to more than a threshold number of uniqueIP addresses per unit time. Connetions to new hosts that exeed the threshold are dropped at theegress router until the next time interval. One bene�t of this ombined defense strategy observedin losed-network simulations is that while peer-sharing algorithms are fundamentally subjet todefeat by rapid worm propagation, the onnetion rate-limiting system that produes the alertsalso e�etively slows overall worm propagation speed well enough to ensure that peer orroborationtakes e�et.Upon reeiving a suÆient number of orroborating worm infetion alarms from itself or peers,an egress router has the apaity to swith into a defensive posture (a �ltering mode that drops allpakets that are assumed orrelated with the majority of peer alerts). To arrive at a suÆientlyabstrat model, we do not speify how to aomplish �ltering, but we attribute a ost to �lteringand prelude the defense algorithm from simply staying in the defensive posture. Other researhersare developing automati signature generation systems suh as EarlyBird [15℄ and Autograph [9℄,whih ould be used for �ltering in an implementation of this sheme.We model a LAN as a graph of loal host nodes with one egress node, and multiple LAN areinteronneted to eah other via their egress nodes. The overall group defense sheme is modeled asthe parallel, asynhronous, deployment of a LAN defense algorithm that is embedded in eah egressnode. Eah LAN defense algorithm instantiation independently progresses through several potentialphases at eah time interval: loal worm detetion, peer-group formulation, alert publiation, andseurity posture updating. During the detetion phase, the egress node may observe loal rate-limitviolations at some end nodes, generating a loal alert for eah violation. During group formulation,the egress node produes a group set of size G from the set of partiipating peer LANs. Thegroup-forming algorithm is designed to ensure a fair distribution of alerts among the ollaboratingpopulation. At eah time interval, an egress node forwards an alert to its peer group if it hasprodued at least one loal worm alert during the urrent time interval. The egress node alsoreeives alerts from other peer LANs and inrements a urrent loal alert level metri a, based onthe number of loal and remote alerts reeived. Eah alert inrements a by a parameterized severityvalue. The severitymetri an be adjusted depending on how muh or how little orroboration theLAN is required to establish before it will enter a defensive posture. a is deayed by a parameterizedvalue per subsequent time intervals. When a exeeds the threshold value �,the egress node imposes�ltering on all inoming pakets that math the �ltering riteria. � is alulated as severity � r,where r indiates the amount of orroboration required before enabling �lters. This �ltering postureis maintained for the number of time intervals required to enable the deay funtion to bring a bakto zero.
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III. Worm Defense Speifiation in Rewriting LogiWe now outline some key Maude features relevant for speifying the above ollaborative defensesystem. A distributed system on�guration is modeled in Maude as a olletion of onurrent objetsand messages that behave aording to a set of rewrite rules desribing the behavior of individualobjets. Maude allows the delaration of node objets with the following syntax:[ identifier | attr_1 : Type_1, ..., attr_N : Type_N ℄where identi�er is a natural number, attr_1, : : :, attr_N are attribute names of types Type_1, : : :,Type_N. An example node in the node objet set looks like[ 7 | infeted : true, alerts : 5, alertLevel : 2 ℄This represents an example node with identi�er 7, having three attributes: infeted, alerts, andalertLevel with the orresponding values. In the atual implementation we have several otherneessary attributes.Synhronous and asynhronous ommuniation has a natural representation in rewriting logi.For simpliity we use synhronous ommuniation to model the worm propagation proess. A rewriterule for suh a propagation involves two nodes and has the following syntax:rl [ O | infeting : true, infeted : true, filtering : false, attrSet ℄[ O' | infeting : true, infeted : false, filtering : false, attrSet ℄=>[ O | infeting : true, infeted : true, filtering : false, attrSet ℄[ O' | infeting : true, infeted : true, filtering : false, attrSet ℄This rule spei�es the infetion event of the node with the identi�er O' by the infeted node withthe identi�er O, neither of whih �ltering. More preise infetion models an be spei�ed by usingasynhronous ommuniation and introduing time and messages with arrival times in the system.Another important aspet of the rewriting logi formalism is its probabilisti variant. A proba-bilisti rewrite rule [1℄, [10℄ and a non-probabilisti rewrite rule together an be used to speify thepropagation ation of a random searh worm:prl [ O | infeting : true, infeted : true, infet : O'', attrSet ℄=>[ O | infeting : true, infeted : true, infet : O', attrSet ℄with probability O':=uniformDistribution(IDSet)rl [ O | infeting : true, infeted : true, infet : O', attrSet ℄[ O' | infeted : false, attrSet' ℄=>[ O | infeting : true, infeted : true, infet : O', attrSet ℄[ O' | infeted : true, attrSet' ℄In the �rst rule, the identi�er of the node to be infeted is hosen randomly and uniformly from theset IDSet of all possible node identi�ers. The onstrution prl is a part of the PMaude spei�ationlanguage whih is a probabilisti extension of Maude. The formal semantis of PMaude has beendesribed in [1℄.The defense system goes through four main phases at eah lok yle: alert prodution, peer-group formulation, alert publiation, and seurity posture management (i.e., deiding whether in-oming alert noti�ations warrant the enabling of egress �lters). We now explain how eah phase ofour algorithm is spei�ed in rewriting logi. During the detetion phase, the egress node's onne-tion rate limiter detets violations of its threshold with a ertain probability. An example rewriterule, in whih detetionProbability is assumed to be known, is expressed as follows:prl [ O | infeted : true, deteted : X, attrSet ℄=>[ O | infeted : true, deteted : Y, attrSet ℄with probability Y:=bernulli(detetionProbability)
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The next phase is the group forming phase. During this phase eah node forms its group randomly.The rewrite rule to form a group may look likeprl [ O | group : L, attrSet ℄=>[ O | group : O';L, attrSet ℄with probability O':=uniform(IDSet)if size(L) < Fwhere L is the list of group member identi�ers separated by semiolons, and prl is a onditionalprobabilisti rewrite rule. The rule is applied repeatedly until the group size has reahed F.The third phase is alert publiation, in whih eah egress node that deteted a loal rate-limitviolation distributes an alert to the members of its seleted peer group. An example rewrite rulespeifying this proess isrl [ O | infeted : true, deteted : true, group : O';L ℄[ O' | alerts : alertNum, attrSet ℄=>[ O | infeted : true, deteted : true, group : L >[ O' | alerts : alertNum + 1, attrSet ℄where O';L is the list of identi�ers of the alert group of the node O. The rule is applied repeatedlyuntil all identi�ers are onsumed by the rule appliation, inreasing the alert levels of those peernodes in the group.The last phase for the egress node is that of seurity posture management. Here, eah egressnode must independently deide whether to enter or exit the defensive posture based on its urrentalert level. An example rewrite rule to apture this logi isrl [ O | alert : alertLevel, filtering : urrentStatus, attrSet ℄=>[ O | filtering : if alertLevel == alphathen trueelse if alertLevel == 0then falseelse urrentStatusfifi, attrSet ℄where alpha is the alert threshold for nodes to enter the defensive posture.IV. Statistial AnalysisAmong its advantages, a Maude rewriting spei�ation is also an exeutable logial spei�ation,allowing us to reason about our egress node logi in distributed, onurrent, and asynhronouslyommuniating network deployment senarios [11℄. To aid our evaluation of the group-ollaborativedefense logi, Maude provides failities to support this evaluation by allowing us to speify desirableprogram properties, and a mehanism to assist in their veri�ation. Here, we present the QuaTEx[1℄ language as our method for speifying several desired algorithm properties, and statistial modelheking supported by the VeStA tool [14℄ to help us validate these properties.A. QuaTExThe most ommonly known way to state properties over paths in stohasti systems is withprobabilisti temporal logis (PTLs). However, PTLs are somewhat restritive: they are limited totrue or false evaluations for a given path of the system, whereas one might want to quantify andompare various path traversal results. For this reason we use the QuaTEx language [1℄; the namestands for Quantitative Temporal Expressions. The language is supported by the VeStA tool [14℄,whih has an interfae to PMaude and enables one to model hek PMaude spei�ations againstQuaTEx properties.The primary objetive of QuaTEx is to generalize probabilisti temporal logi formulas fromBoolean-valued expressions to real-valued expressions. The Boolean interpretation is preserved asa speial ase using the real numbers 0 and 1. As usual, QuaTEx has state expressions that areevaluated on states, and (real-valued) path expressions that are evaluated on omputation paths.The notion of state prediates is now generalized to that of state funtions, whih an evaluate4



quantitative properties of a state. QuaTEx is partiularly expressive, and inludes an ability tode�ne reursive expressions. In this way, only the next operator and onditional branhing if Bexpthen Pexp else Pexp 0 �, with Bexp Boolean and Pexp,Pexp 0 path expressions are needed to de�nemore omplex operators, suh as the until U of probabilisti omputational tree logi (PCTL) andof ontinuous stohasti logi (CSL) [3℄, and the CSL-bounded until U�T . More details regardingQuaTEx and its semantis an be found in [1℄. To illustrate its appliability, we present one ofthe QuaTEx expressions evaluated for our ase study. The following expression is evaluated onomputation paths, and aptures the number of infeted nodes at the time when the number ofinfeted nodes has stabilized:QuaTEx : perentInfeted(perentage ; ount) =if ount = 0 then perentInfetedInState()else if perentInfetedInState() > perentagethen  (perentInfeted(perentInfetedInState(); timeSpan))else  (perentInfeted(n; ount � 1 ))Querry : E [perentInfeted(0 ; timeSpan)℄where perentInfetedInState() is the state funtion that maps the urrent Maude state to theperentage of infeted nodes at the urrent time tik.When translated to the VeStA syntax, the QuaTEx query above instruts VeStA to omputethe mathematial expetation of the number of infeted nodes after the worm reahes its full sat-uration. The typial shape of the worm growth dynamis suggests that at this point in time, thesystem reahes an equilibrium. We de�ne the equilibrium as the point in time at whih the numberof infeted nodes has not hanged for a timeSpan number of tiks. The reursive-over-time funtionperentInfeted (perentage ; ount) provides the perentage of infeted nodes at the end of the sim-ulation. The simulation ends when there have been no new nodes infeted for the prede�ned timetimeSpan .B. VeStAVeStA is a tool that performs statistial analysis on a probabilisti system by evaluating QuaTExexpressions on omputation paths obtained by Monte Carlo simulations. When two parameters �and Æ are provided to the tool, VeStA responds with a real number v, whih is the estimated valueof the expression with a (1��)100% on�dene interval bounded by Æ. Depending on the tightnessof the parameters, VeStA may need a greater or smaller number of sample runs to ompute suh avalue. An example output of the ommand above has the following form:Sample ount = 1885, Result: 0.288594164, Run time: 6291.132 seondsIt shows the number of paths VeStA needed to obtain the result with the on�dene interval, theresult itself, and the running time in seonds.V. Design Goals of a Worm DefenseThe evaluation and omparison of the emerging number of worm defense approahes remains aresearh hallenge. In a disussion of the need for formalizing evaluation and omparison riteria,[6℄ observes that today the evaluation of worm defense strategies enters nearly exlusively on theimpat that the defense has on the infetion growth rate. However, in many ases this is a less thandistinguishing metri as many shemes show similar dynamis. Here, we evaluate lassial wormdefense properties suh as the infetion growth rate, but also augment our evaluation with propertiesinspired by [6℄. All properties disussed next are stated in QuaTEx, along with text statement ofthe property. We do not present the infetion growth rate graph itself, but rather estimate the threekey parameters of its urve. We present two types of properties: (i) values that are possible to inferfrom infetion growth urves, and (ii) values that annot be inferred from infetion growth urves.A. Properties Based on Infetion Growth CurvesWe onsider a partiular type of worm propagation urve, whih ours in the simulations of ourdefense algorithm and our worm model. The shape of the urve is sigmoidal (S-urve), with rapidgrowth followed by the epidemi reahing its equilibrium. Three values haraterize urves of thistype visually: the total infetion perentage at saturation, the maximal propagation speed, and thetime at whih saturation is reahed.Property 1: Estimated number of infeted hosts after the worm has reahed its full saturation.The QuaTEx query for Property 1 was presented in the previous setion.5



Property 2: The maximal worm propagation speed measured as a perentage of nodes per tikinfeted during the greatest infetion spike:Quatex : maxSpeed(speed ; perentage; ount) =if ount = 0 then speedelse ifperentInfetedInState()� perentage > speedthen maxSpeed(perentInfetedInState()� perentage;perentInfetedInState(); timeSpan)else maxSpeed(speed ; perentage; ount � 1 )Querry : E [maxSpeed(0 ; 0 ; timeSpan)℄Property 3: The expetation of the time point when the worm has reahed its full saturation:Quatex : satTime(perentage ; ount) =if ount = 0 then time()else if perentInfetedInState() > perentagethen  satTime(perentInfetedInState(); timeSpan)else  satTime(perentage; ount � 1 )Querry : E [satTime(0 ; timeSpan)℄B. A Property Independent from Infetion Growth CurvesMost ontemporary worm defense design assessments onentrate on infetion growth impat,whih provides a diret insight into the overall protetion e�etiveness of the defense, but doesnot apture issues suh as the ost assoiated with defensive �ltering, overhead of ommuniations,or loal impat to infetion resistane for a partiipating or nonpartiipating LAN. We propose aproperty inspired by [6℄ and generalized in QuaTEx spirit:Property 4: Estimated perentage of uninfeted nodes in the nondefensive posture after the wormhas reahed saturation:Quatex : notInfetedNonFiltering(perentage ; ount) =if ount = 0 then NotInfetedNonFilteringInState()else if perentInfetedInState() > perentagethen  notInfetedNonFiltering(perentInfetedInState(); timeSpan)else  notInfetedNonFiltering(perentage ; ount � 1 )Querry : E [satTime(0 ; timeSpan)℄VI. Analysis of Properties and DisussionWhen analyzing Property 1, we observed that gaining high on�dene in the analysis requires alarge number of runs. This means that the distribution of the random variable under onsiderationhas a large deviation. From this we an infer that the number of infeted hosts may vary signi�antlyfrom run to run. For eah run, our system prints out the initial random seed used and the resultsobtained. This permits us to reonstrut problemati runs by using the same initial random seedfor the forensi analysis. In doing so we disovered that sine eah node hooses its peers at randomfrom the whole population, in some ases the population is not overed uniformly. Thus, some nodesdo not get enough alerts to reliably enter the defensive posture in time. That is, uneven overageof the network leads to the onern that if all nodes happen to over only a partiular part of thenetwork, then the exluded nodes do not get enough alerts to enter the defensive posture in time.The probability of this situation is not high, but it is also not very diÆult to avoid the problem.In light of this �nding, we adjusted our group seletion mehanism to ensure uniform fair overageof LANs in groups. In our solution, at every tik one node with low probability beomes a leader.The leader assigns alert groups to the rest of the population suh that the overage is highlyuniform. The proposed approah has two bene�ts: the leader annot be loated ahead of time, andthe burden of assigning groups is uniformly distributed throughout the network. The importane ofrefreshing one's alert groups is demonstrated in [5℄, whih disovered multiple ounter-quarantineworm propagation strategies that exploit stati group strutures.After �xing the unevenness in the population overage we tried to vary the false negative rate.We found that the number of infeted nodes is very sensitive to this parameter when the wholesaturation ours. The number of infeted nodes rapidly grew when we stated the false negative6



rate higher than 5 perent. This an be explained by the fat that this partiular algorithm isvery sensitive to the time when infeted nodes enter the defensive posture, where early entry ansigni�antly hinder an emerging worm. However, this may be unrealisti in general, illustrating thatsimulations may point to potentially important parameters of the system, and suggesting a need formore study of this phenomenon.A. Experimental SettingWe used VeStA to query properties desribed in the previous setions. The parameter � wasset to 0:01 and the parameter Æ was set to 0:05. The hoie of � means that if the omputationof values is repeated, they will be in the same on�dene interval with probability 99%. Given anoutput v of the algorithm, the on�dene interval is omputed as [v(1 � Æ); v=(1 � Æ)℄. The wormmodel was a random searh worm, whih tries to infet a mahine at eah tik. These parametersare summarized in the following table:Name Meaning ValuetS Infetion plateau time to delare saturation 10� Con�dene level 99%Æ Con�dene interval 0.05The parameters of the defense system inlude the number of egress nodes, group size, the sever-ity and orroboration metris, and alpha, and were explained in Setion II. These parameters,along with the modeled false positive and negative alert rates per tik (we employed a Bernoullidistribution), are summarized in the following table:Name Meaning ValueN number of nodes 10G group size 4s severity 3r orroboration 2�t = s � r alert threshold 6pfp false positive alert rate 0.1pfn false negative alert rate 0.05The worm saturation was de�ned as the infetion perentage stability during 10 tiks. Our modelsimulations and property validations were onduted on a Linux workstation, with two Pentium 4Xeon proessors and 16Gbs of memory.B. Tehnial ResultsWe obtained the following results when omputing the proposed properties using the experimentalsetting desribed in the previous setion. The results were obtained using a version of the algorithmwith heuristis for uniform peer seletion desribed earlier.� Property 1. The perentage of infeted hosts after saturation lies in the on�dene interval[0:27; 0:30℄. The omputation took about 100 minutes, requiring the generation of about 1800paths.� Property 2. The propagation speed of the worm during its maximum infetion spike was mea-sured as a perentage of newly infeted nodes per tik, with the on�dene interval [0:14; 0:15℄.The omputation of the property took about 20 minutes, requiring the generation of about 300paths.� Property 3. The expeted time to saturation lies in the on�dene interval [14:0; 15:5℄. Theomputation of the on�dene interval took about 16 minutes and required the generation ofabout 200 paths.� Property 4. The perentage of uninfeted non�ltering hosts lies in the on�dene interval[0:53; 0:58℄. The omputation took about 50 minutes and required the generation of about 800paths.C. SalabilityTo address the salability issue we looked at the dependene of Property 3 to the number of nodesin the system when keeping the ratio (group size / number of nodes) onstant. The results showvery low dependene of the saturation time on the number of nodes, and are summarized as follows:7
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