
Applying Formal Evaluation to Worm Defense DesignRaman Sharykin Phillip A. PorrasDepartment of Computer S
ien
e Computer S
ien
e LaboratoryUniversity of Illinois Urbana-Champaign SRI International201 N Goodwin Avenue 333 Ravenswood AvenueUrbana, IL 61801 Menlo Park, CA 94025Abstra
tWe dis
uss the early insertion of formal analyses in distributed malware defense evaluation, andprovide an example method for applying an exe
utable rewriting logi
 spe
i�
ation to drive bothsimulation and property validation of a
ollaborative group-based worm defense. An importantaspe
t of the algorithm under
onsideration is its distributed and probabilisti
 nature, whi
h makesthe defense system harder to atta
k but unfortunately also
ompli
ates the ability of designers tofully understand its behavioral properties. We demonstrate one approa
h to formally analyze our
ase study worm defense algorithm, employing tools that fa
ilitate both statisti
al simulation andproperty validation. Our approa
h is posed as
omplementary to the
urrent pra
ti
e of informaldesign spe
i�
ation and evaluation through network simulation.I. Introdu
tionWith the in
reasing importan
e and
omplexity of distributed malware defense systems, theappli
ation of formal methods for understanding the dynami
s of su
h systems early in their design
ould prove highly valuable. However, to date formal analyses of malware defense algorithms havebeen extremely limited, with the vast majority of designers relying on informal or pseudo
odespe
i�
ations, network simulation, and fun
tional testing to assess their designs. One obsta
le tothe appli
ation of formal methods in this area is the diÆ
ulty in determining a proper formalism toapply when evaluating a given malware defense algorithm. If an underlying formalism su
h as Petrinets or dis
rete-time Markov
hains is sele
ted, it may be
ostly to swit
h to a di�erent formalismin
ases where another formalism is later determined to be more appropriate in assessing
ertainalgorithm properties.We present an approa
h to applying formal methods to the design of malware defenses usingrewriting logi
 [12℄. Rewriting logi
 allows an early insertion of formal methods, while not restri
tingthe designer to a narrow formalism. It has been shown that di�erent mathemati
al models
an benaturally expressed in rewriting logi
 [11℄, [12℄. Formalisms based on rewriting logi

an be
on
ise,relatively intuitive, and well suited for spe
ifying distributed
on
urrent systems with asyn
hronous
ommuni
ation in play. Rewriting logi
 spe
i�
ations are exe
utable in a rewriting-logi
 language,su
h as Maude [8℄, whi
h allows one to simulate and adjust a malware defense spe
i�
ation overvarious atta
k s
enarios very early in the design life
y
le. When the designer is satis�ed withthe spe
i�
ation, an appropriate narrower formalism with a known representation in rewriting logi

an be used to assist in proving various
riti
al properties or to identify logi
al in
onsisten
ies notdis
ernible through simulation. Maude itself supports assistan
e for formal proofs in rewriting logi
[7℄.On
e a formalism is sele
ted, another important question is how to analyze the system duringearly development. A desirable method should be \lightweight," in that it should allow the designerto fo
us on the defense algorithm and its parameters. We prefer methods that allow us to rapidlyassess key behavioral properties and iterate the defense model under various operating assumptions,and to invest e�orts in more
omplex formal validation pro
edures only later, when the designspa
e is narrowed. For our appli
ation of a malware defense system, we propose a simulation-based approa
h with a temporal quantitative language QuaTEx [1℄, whi
h we explain is well suitedto quantitatively assessing the behavior of sto
hasti
 systems, su
h as malware defense proto
olsunder a distributed atta
k.To illustrate our methodology we
onsider a
ase study involving a probabilisti
 worm defensealgorithm. The primary
ontribution of this paper is to demonstrate a formal approa
h to analyzingthe behavioral properties of this peer-based distributed sto
hasti
 system in a malware defense

ontext, and to illustrate the types of se
urity properties that we believe are appli
able, here and withother malware defense algorithms, to investigation through formal analyses rather than simulation.The paper is organized as follows: Se
tion II introdu
es the illustrative worm defense system;Se
tion III explains how this system
an be spe
i�ed using Maude rewriting logi
; Se
tion IVexplains how a property
an be spe
i�ed in QuaTEx and how it
an be statisti
ally analyzed usingVeStA; Se
tion V dis
usses example properties and introdu
es a property whi
h
annot be inferredfrom analysis of a propagation
urve; �nally, Se
tion VI presents our �ndings while shaping ouralgorithm and provides te
hni
al results.II. An Example Worm Defense SystemTo motivate our presentation, we brie
y present an example, previously published, group-basedworm defense algorithm [4℄. Our intent here is to des
ribe the basi
s of the algorithm to drive ourformal modeling dis
ussion, and refer the reader to the publi
ation for more information regardingthe algorithm details and eÆ
a
y arguments.Under this group defense algorithm, lo
al area networks (LANs)
ollaborate in groups, where ea
hLAN's egress router informs its group partners when it produ
es lo
al alerts asso
iated with potentialworm infe
tion a
tivity. When a LAN re
eives
orroborating worm reports from N or more sour
es,it enters a defensive �ltering posture. The algorithm is similar to the peer alert sharing proto
olspresented in [2℄ and [13℄, but here alert produ
tion is driven by a
onne
tion rate-limiting system,su
h as that presented in [16℄. Our
onne
tion rate-limiting
omponent produ
es an alarm whenit observes an internal host that attempts to
onne
t to more than a threshold number of uniqueIP addresses per unit time. Conne
tions to new hosts that ex
eed the threshold are dropped at theegress router until the next time interval. One bene�t of this
ombined defense strategy observedin
losed-network simulations is that while peer-sharing algorithms are fundamentally subje
t todefeat by rapid worm propagation, the
onne
tion rate-limiting system that produ
es the alertsalso e�e
tively slows overall worm propagation speed well enough to ensure that peer
orroborationtakes e�e
t.Upon re
eiving a suÆ
ient number of
orroborating worm infe
tion alarms from itself or peers,an egress router has the
apa
ity to swit
h into a defensive posture (a �ltering mode that drops allpa
kets that are assumed
orrelated with the majority of peer alerts). To arrive at a suÆ
ientlyabstra
t model, we do not spe
ify how to a

omplish �ltering, but we attribute a
ost to �lteringand pre
lude the defense algorithm from simply staying in the defensive posture. Other resear
hersare developing automati
 signature generation systems su
h as EarlyBird [15℄ and Autograph [9℄,whi
h
ould be used for �ltering in an implementation of this s
heme.We model a LAN as a graph of lo
al host nodes with one egress node, and multiple LAN areinter
onne
ted to ea
h other via their egress nodes. The overall group defense s
heme is modeled asthe parallel, asyn
hronous, deployment of a LAN defense algorithm that is embedded in ea
h egressnode. Ea
h LAN defense algorithm instantiation independently progresses through several potentialphases at ea
h time interval: lo
al worm dete
tion, peer-group formulation, alert publi
ation, andse
urity posture updating. During the dete
tion phase, the egress node may observe lo
al rate-limitviolations at some end nodes, generating a lo
al alert for ea
h violation. During group formulation,the egress node produ
es a group set of size G from the set of parti
ipating peer LANs. Thegroup-forming algorithm is designed to ensure a fair distribution of alerts among the
ollaboratingpopulation. At ea
h time interval, an egress node forwards an alert to its peer group if it hasprodu
ed at least one lo
al worm alert during the
urrent time interval. The egress node alsore
eives alerts from other peer LANs and in
rements a
urrent lo
al alert level metri
 a, based onthe number of lo
al and remote alerts re
eived. Ea
h alert in
rements a by a parameterized severityvalue. The severitymetri

an be adjusted depending on how mu
h or how little
orroboration theLAN is required to establish before it will enter a defensive posture. a is de
ayed by a parameterizedvalue per subsequent time intervals. When a ex
eeds the threshold value �,the egress node imposes�ltering on all in
oming pa
kets that mat
h the �ltering
riteria. � is
al
ulated as severity � r,where r indi
ates the amount of
orroboration required before enabling �lters. This �ltering postureis maintained for the number of time intervals required to enable the de
ay fun
tion to bring a ba
kto zero.
2

III. Worm Defense Spe
ifi
ation in Rewriting Logi
We now outline some key Maude features relevant for spe
ifying the above
ollaborative defensesystem. A distributed system
on�guration is modeled in Maude as a
olle
tion of
on
urrent obje
tsand messages that behave a

ording to a set of rewrite rules des
ribing the behavior of individualobje
ts. Maude allows the de
laration of node obje
ts with the following syntax:[identifier | attr_1 : Type_1, ..., attr_N : Type_N ℄where identi�er is a natural number, attr_1, : : :, attr_N are attribute names of types Type_1, : : :,Type_N. An example node in the node obje
t set looks like[7 | infe
ted : true, alerts : 5, alertLevel : 2 ℄This represents an example node with identi�er 7, having three attributes: infe
ted, alerts, andalertLevel with the
orresponding values. In the a
tual implementation we have several otherne
essary attributes.Syn
hronous and asyn
hronous
ommuni
ation has a natural representation in rewriting logi
.For simpli
ity we use syn
hronous
ommuni
ation to model the worm propagation pro
ess. A rewriterule for su
h a propagation involves two nodes and has the following syntax:rl [O | infe
ting : true, infe
ted : true, filtering : false, attrSet ℄[O' | infe
ting : true, infe
ted : false, filtering : false, attrSet ℄=>[O | infe
ting : true, infe
ted : true, filtering : false, attrSet ℄[O' | infe
ting : true, infe
ted : true, filtering : false, attrSet ℄This rule spe
i�es the infe
tion event of the node with the identi�er O' by the infe
ted node withthe identi�er O, neither of whi
h �ltering. More pre
ise infe
tion models
an be spe
i�ed by usingasyn
hronous
ommuni
ation and introdu
ing time and messages with arrival times in the system.Another important aspe
t of the rewriting logi
 formalism is its probabilisti
 variant. A proba-bilisti
 rewrite rule [1℄, [10℄ and a non-probabilisti
 rewrite rule together
an be used to spe
ify thepropagation a
tion of a random sear
h worm:prl [O | infe
ting : true, infe
ted : true, infe
t : O'', attrSet ℄=>[O | infe
ting : true, infe
ted : true, infe
t : O', attrSet ℄with probability O':=uniformDistribution(IDSet)rl [O | infe
ting : true, infe
ted : true, infe
t : O', attrSet ℄[O' | infe
ted : false, attrSet' ℄=>[O | infe
ting : true, infe
ted : true, infe
t : O', attrSet ℄[O' | infe
ted : true, attrSet' ℄In the �rst rule, the identi�er of the node to be infe
ted is
hosen randomly and uniformly from theset IDSet of all possible node identi�ers. The
onstru
tion prl is a part of the PMaude spe
i�
ationlanguage whi
h is a probabilisti
 extension of Maude. The formal semanti
s of PMaude has beendes
ribed in [1℄.The defense system goes through four main phases at ea
h
lo
k
y
le: alert produ
tion, peer-group formulation, alert publi
ation, and se
urity posture management (i.e., de
iding whether in-
oming alert noti�
ations warrant the enabling of egress �lters). We now explain how ea
h phase ofour algorithm is spe
i�ed in rewriting logi
. During the dete
tion phase, the egress node's
onne
-tion rate limiter dete
ts violations of its threshold with a
ertain probability. An example rewriterule, in whi
h dete
tionProbability is assumed to be known, is expressed as follows:prl [O | infe
ted : true, dete
ted : X, attrSet ℄=>[O | infe
ted : true, dete
ted : Y, attrSet ℄with probability Y:=bernulli(dete
tionProbability)
3

The next phase is the group forming phase. During this phase ea
h node forms its group randomly.The rewrite rule to form a group may look like
prl [O | group : L, attrSet ℄=>[O | group : O';L, attrSet ℄with probability O':=uniform(IDSet)if size(L) < Fwhere L is the list of group member identi�ers separated by semi
olons, and
prl is a
onditionalprobabilisti
 rewrite rule. The rule is applied repeatedly until the group size has rea
hed F.The third phase is alert publi
ation, in whi
h ea
h egress node that dete
ted a lo
al rate-limitviolation distributes an alert to the members of its sele
ted peer group. An example rewrite rulespe
ifying this pro
ess isrl [O | infe
ted : true, dete
ted : true, group : O';L ℄[O' | alerts : alertNum, attrSet ℄=>[O | infe
ted : true, dete
ted : true, group : L >[O' | alerts : alertNum + 1, attrSet ℄where O';L is the list of identi�ers of the alert group of the node O. The rule is applied repeatedlyuntil all identi�ers are
onsumed by the rule appli
ation, in
reasing the alert levels of those peernodes in the group.The last phase for the egress node is that of se
urity posture management. Here, ea
h egressnode must independently de
ide whether to enter or exit the defensive posture based on its
urrentalert level. An example rewrite rule to
apture this logi
 isrl [O | alert : alertLevel, filtering :
urrentStatus, attrSet ℄=>[O | filtering : if alertLevel == alphathen trueelse if alertLevel == 0then falseelse
urrentStatusfifi, attrSet ℄where alpha is the alert threshold for nodes to enter the defensive posture.IV. Statisti
al AnalysisAmong its advantages, a Maude rewriting spe
i�
ation is also an exe
utable logi
al spe
i�
ation,allowing us to reason about our egress node logi
 in distributed,
on
urrent, and asyn
hronously
ommuni
ating network deployment s
enarios [11℄. To aid our evaluation of the group-
ollaborativedefense logi
, Maude provides fa
ilities to support this evaluation by allowing us to spe
ify desirableprogram properties, and a me
hanism to assist in their veri�
ation. Here, we present the QuaTEx[1℄ language as our method for spe
ifying several desired algorithm properties, and statisti
al model
he
king supported by the VeStA tool [14℄ to help us validate these properties.A. QuaTExThe most
ommonly known way to state properties over paths in sto
hasti
 systems is withprobabilisti
 temporal logi
s (PTLs). However, PTLs are somewhat restri
tive: they are limited totrue or false evaluations for a given path of the system, whereas one might want to quantify and
ompare various path traversal results. For this reason we use the QuaTEx language [1℄; the namestands for Quantitative Temporal Expressions. The language is supported by the VeStA tool [14℄,whi
h has an interfa
e to PMaude and enables one to model
he
k PMaude spe
i�
ations againstQuaTEx properties.The primary obje
tive of QuaTEx is to generalize probabilisti
 temporal logi
 formulas fromBoolean-valued expressions to real-valued expressions. The Boolean interpretation is preserved asa spe
ial
ase using the real numbers 0 and 1. As usual, QuaTEx has state expressions that areevaluated on states, and (real-valued) path expressions that are evaluated on
omputation paths.The notion of state predi
ates is now generalized to that of state fun
tions, whi
h
an evaluate4

quantitative properties of a state. QuaTEx is parti
ularly expressive, and in
ludes an ability tode�ne re
ursive expressions. In this way, only the next operator
 and
onditional bran
hing if Bexpthen Pexp else Pexp 0 �, with Bexp Boolean and Pexp,Pexp 0 path expressions are needed to de�nemore
omplex operators, su
h as the until U of probabilisti

omputational tree logi
 (PCTL) andof
ontinuous sto
hasti
 logi
 (CSL) [3℄, and the CSL-bounded until U�T . More details regardingQuaTEx and its semanti
s
an be found in [1℄. To illustrate its appli
ability, we present one ofthe QuaTEx expressions evaluated for our
ase study. The following expression is evaluated on
omputation paths, and
aptures the number of infe
ted nodes at the time when the number ofinfe
ted nodes has stabilized:QuaTEx : per
entInfe
ted(per
entage ;
ount) =if
ount = 0 then per
entInfe
tedInState()else if per
entInfe
tedInState() > per
entagethen
 (per
entInfe
ted(per
entInfe
tedInState(); timeSpan))else
 (per
entInfe
ted(n;
ount � 1))Querry : E [per
entInfe
ted(0 ; timeSpan)℄where per
entInfe
tedInState() is the state fun
tion that maps the
urrent Maude state to theper
entage of infe
ted nodes at the
urrent time ti
k.When translated to the VeStA syntax, the QuaTEx query above instru
ts VeStA to
omputethe mathemati
al expe
tation of the number of infe
ted nodes after the worm rea
hes its full sat-uration. The typi
al shape of the worm growth dynami
s suggests that at this point in time, thesystem rea
hes an equilibrium. We de�ne the equilibrium as the point in time at whi
h the numberof infe
ted nodes has not
hanged for a timeSpan number of ti
ks. The re
ursive-over-time fun
tionper
entInfe
ted (per
entage ;
ount) provides the per
entage of infe
ted nodes at the end of the sim-ulation. The simulation ends when there have been no new nodes infe
ted for the prede�ned timetimeSpan .B. VeStAVeStA is a tool that performs statisti
al analysis on a probabilisti
 system by evaluating QuaTExexpressions on
omputation paths obtained by Monte Carlo simulations. When two parameters �and Æ are provided to the tool, VeStA responds with a real number v, whi
h is the estimated valueof the expression with a (1��)100%
on�den
e interval bounded by Æ. Depending on the tightnessof the parameters, VeStA may need a greater or smaller number of sample runs to
ompute su
h avalue. An example output of the
ommand above has the following form:Sample
ount = 1885, Result: 0.288594164, Run time: 6291.132 se
ondsIt shows the number of paths VeStA needed to obtain the result with the
on�den
e interval, theresult itself, and the running time in se
onds.V. Design Goals of a Worm DefenseThe evaluation and
omparison of the emerging number of worm defense approa
hes remains aresear
h
hallenge. In a dis
ussion of the need for formalizing evaluation and
omparison
riteria,[6℄ observes that today the evaluation of worm defense strategies
enters nearly ex
lusively on theimpa
t that the defense has on the infe
tion growth rate. However, in many
ases this is a less thandistinguishing metri
 as many s
hemes show similar dynami
s. Here, we evaluate
lassi
al wormdefense properties su
h as the infe
tion growth rate, but also augment our evaluation with propertiesinspired by [6℄. All properties dis
ussed next are stated in QuaTEx, along with text statement ofthe property. We do not present the infe
tion growth rate graph itself, but rather estimate the threekey parameters of its
urve. We present two types of properties: (i) values that are possible to inferfrom infe
tion growth
urves, and (ii) values that
annot be inferred from infe
tion growth
urves.A. Properties Based on Infe
tion Growth CurvesWe
onsider a parti
ular type of worm propagation
urve, whi
h o

urs in the simulations of ourdefense algorithm and our worm model. The shape of the
urve is sigmoidal (S-
urve), with rapidgrowth followed by the epidemi
 rea
hing its equilibrium. Three values
hara
terize
urves of thistype visually: the total infe
tion per
entage at saturation, the maximal propagation speed, and thetime at whi
h saturation is rea
hed.Property 1: Estimated number of infe
ted hosts after the worm has rea
hed its full saturation.The QuaTEx query for Property 1 was presented in the previous se
tion.5

Property 2: The maximal worm propagation speed measured as a per
entage of nodes per ti
kinfe
ted during the greatest infe
tion spike:Quatex : maxSpeed(speed ; per
entage;
ount) =if
ount = 0 then speedelse ifper
entInfe
tedInState()� per
entage > speedthen
maxSpeed(per
entInfe
tedInState()� per
entage;per
entInfe
tedInState(); timeSpan)else
maxSpeed(speed ; per
entage;
ount � 1)Querry : E [maxSpeed(0 ; 0 ; timeSpan)℄Property 3: The expe
tation of the time point when the worm has rea
hed its full saturation:Quatex : satTime(per
entage ;
ount) =if
ount = 0 then time()else if per
entInfe
tedInState() > per
entagethen
 satTime(per
entInfe
tedInState(); timeSpan)else
 satTime(per
entage;
ount � 1)Querry : E [satTime(0 ; timeSpan)℄B. A Property Independent from Infe
tion Growth CurvesMost
ontemporary worm defense design assessments
on
entrate on infe
tion growth impa
t,whi
h provides a dire
t insight into the overall prote
tion e�e
tiveness of the defense, but doesnot
apture issues su
h as the
ost asso
iated with defensive �ltering, overhead of
ommuni
ations,or lo
al impa
t to infe
tion resistan
e for a parti
ipating or nonparti
ipating LAN. We propose aproperty inspired by [6℄ and generalized in QuaTEx spirit:Property 4: Estimated per
entage of uninfe
ted nodes in the nondefensive posture after the wormhas rea
hed saturation:Quatex : notInfe
tedNonFiltering(per
entage ;
ount) =if
ount = 0 then NotInfe
tedNonFilteringInState()else if per
entInfe
tedInState() > per
entagethen
 notInfe
tedNonFiltering(per
entInfe
tedInState(); timeSpan)else
 notInfe
tedNonFiltering(per
entage ;
ount � 1)Querry : E [satTime(0 ; timeSpan)℄VI. Analysis of Properties and Dis
ussionWhen analyzing Property 1, we observed that gaining high
on�den
e in the analysis requires alarge number of runs. This means that the distribution of the random variable under
onsiderationhas a large deviation. From this we
an infer that the number of infe
ted hosts may vary signi�
antlyfrom run to run. For ea
h run, our system prints out the initial random seed used and the resultsobtained. This permits us to re
onstru
t problemati
 runs by using the same initial random seedfor the forensi
 analysis. In doing so we dis
overed that sin
e ea
h node
hooses its peers at randomfrom the whole population, in some
ases the population is not
overed uniformly. Thus, some nodesdo not get enough alerts to reliably enter the defensive posture in time. That is, uneven
overageof the network leads to the
on
ern that if all nodes happen to
over only a parti
ular part of thenetwork, then the ex
luded nodes do not get enough alerts to enter the defensive posture in time.The probability of this situation is not high, but it is also not very diÆ
ult to avoid the problem.In light of this �nding, we adjusted our group sele
tion me
hanism to ensure uniform fair
overageof LANs in groups. In our solution, at every ti
k one node with low probability be
omes a leader.The leader assigns alert groups to the rest of the population su
h that the
overage is highlyuniform. The proposed approa
h has two bene�ts: the leader
annot be lo
ated ahead of time, andthe burden of assigning groups is uniformly distributed throughout the network. The importan
e ofrefreshing one's alert groups is demonstrated in [5℄, whi
h dis
overed multiple
ounter-quarantineworm propagation strategies that exploit stati
 group stru
tures.After �xing the unevenness in the population
overage we tried to vary the false negative rate.We found that the number of infe
ted nodes is very sensitive to this parameter when the wholesaturation o

urs. The number of infe
ted nodes rapidly grew when we stated the false negative6

rate higher than 5 per
ent. This
an be explained by the fa
t that this parti
ular algorithm isvery sensitive to the time when infe
ted nodes enter the defensive posture, where early entry
ansigni�
antly hinder an emerging worm. However, this may be unrealisti
 in general, illustrating thatsimulations may point to potentially important parameters of the system, and suggesting a need formore study of this phenomenon.A. Experimental SettingWe used VeStA to query properties des
ribed in the previous se
tions. The parameter � wasset to 0:01 and the parameter Æ was set to 0:05. The
hoi
e of � means that if the
omputationof values is repeated, they will be in the same
on�den
e interval with probability 99%. Given anoutput v of the algorithm, the
on�den
e interval is
omputed as [v(1 � Æ); v=(1 � Æ)℄. The wormmodel was a random sear
h worm, whi
h tries to infe
t a ma
hine at ea
h ti
k. These parametersare summarized in the following table:Name Meaning ValuetS Infe
tion plateau time to de
lare saturation 10� Con�den
e level 99%Æ Con�den
e interval 0.05The parameters of the defense system in
lude the number of egress nodes, group size, the sever-ity and
orroboration metri
s, and alpha, and were explained in Se
tion II. These parameters,along with the modeled false positive and negative alert rates per ti
k (we employed a Bernoullidistribution), are summarized in the following table:Name Meaning ValueN number of nodes 10G group size 4s severity 3r
orroboration 2�t = s � r alert threshold 6pfp false positive alert rate 0.1pfn false negative alert rate 0.05The worm saturation was de�ned as the infe
tion per
entage stability during 10 ti
ks. Our modelsimulations and property validations were
ondu
ted on a Linux workstation, with two Pentium 4Xeon pro
essors and 16Gbs of memory.B. Te
hni
al ResultsWe obtained the following results when
omputing the proposed properties using the experimentalsetting des
ribed in the previous se
tion. The results were obtained using a version of the algorithmwith heuristi
s for uniform peer sele
tion des
ribed earlier.� Property 1. The per
entage of infe
ted hosts after saturation lies in the
on�den
e interval[0:27; 0:30℄. The
omputation took about 100 minutes, requiring the generation of about 1800paths.� Property 2. The propagation speed of the worm during its maximum infe
tion spike was mea-sured as a per
entage of newly infe
ted nodes per ti
k, with the
on�den
e interval [0:14; 0:15℄.The
omputation of the property took about 20 minutes, requiring the generation of about 300paths.� Property 3. The expe
ted time to saturation lies in the
on�den
e interval [14:0; 15:5℄. The
omputation of the
on�den
e interval took about 16 minutes and required the generation ofabout 200 paths.� Property 4. The per
entage of uninfe
ted non�ltering hosts lies in the
on�den
e interval[0:53; 0:58℄. The
omputation took about 50 minutes and required the generation of about 800paths.C. S
alabilityTo address the s
alability issue we looked at the dependen
e of Property 3 to the number of nodesin the system when keeping the ratio (group size / number of nodes)
onstant. The results showvery low dependen
e of the saturation time on the number of nodes, and are summarized as follows:7

Number of Nodes, N 10 50 70 100Group size, G 4 20 28 40Saturation time 14.73 15.08 15.34 16.65Computation time (hours) 0.31 4.41 6.83 18Paths generated 240 2125 2625 4230VII. Con
lusionWe present a formalism and evaluation pro
edure for examining the behavioral properties of dis-tributed malware defense algorithms. While we have demonstrated our approa
h using an example
ollaborative peer-based worm defense, we believe that our method and proposed properties arehighly appli
able to a number of published malware defense s
hemes. We suggest an iterative evalu-ation pro
edure
onsisting of three key steps: design spe
i�
ation, property statement, and propertyanalysis. As the formal basis for the �rst one we have demonstrated the use of rewriting logi
; forthe se
ond pro
ess we employed QuaTEx; and for the third pro
ess we employed VeStA togetherwith Maude. We have presented an example spe
i�
ation, four example evaluation properties, thenumeri
al results obtained through our pro
ess, and our general experien
es in using this approa
h.A
knowledgement. This material is based upon work partially supported through the U.S. ArmyResear
h OÆ
e under the Cyber-TA Resear
h Grant No.W911NF-06-1-0316, by the National S
ien
eFoundation under Grants No.ANI-0335299, CNS 05-24516, ONR N00014-02-1-0715, and through asub
ontra
t with the University of California at Davis, Contra
t No. 01RA005. We
ordially thankLinda Briesemeister for working with us on this proje
t.Referen
es[1℄ Gul Agha, Jos�e Meseguer, and Koushik Sen. PMaude: Rewrite-based spe
i�
ation language for probabilis-ti
 obje
t systems. In 3rd Workshop on Quantitative Aspe
ts of Programming Languages (QALP'05) ENTCS,http://osl.
s.uiu
.edu/�ksen/publi
ations.html, 2005.[2℄ K. G. Anagnostakis, M. B. Greenwald, S. Ioannidis, A. D. Keromytis, and D. Li. A
ooperative immuniza-tion system for an untrusting Internet. In Pro
eedings of the 11th IEEE International Conferen
e on Networks(ICON'03), O
tober 2003.[3℄ Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. Model-
he
king
ontinuous-time markov
hains. ACM Trans. Comput. Logi
, 1(1), 2000.[4℄ Linda Briesemeister and Phillip Porras. Mi
ros
opi
 simulation of a group defense strategy. In Pro
eedings ofWorkshop on Prin
iples of Advan
ed and Distributed Simulation (PADS), June 2005.[5℄ Linda Briesemeister and Phillip Porras. Automati
ally dedu
ing propagation sequen
es that
ir
umvent a
ol-laborative worm defense. In Pro
eedings of the 25th International Performan
e Computing and Communi
ationsConferen
e (Workshop on Malware), April 2006.[6℄ Linda Briesemeister and Phillip Porras. Formally spe
ifying design goals of worm defense strategies. In Pro
eedingsof DETER Community Workshop on Cyber Se
urity Experimentation and Test, June 2006. Extended Abstra
t.[7℄ M. Clavel, F. Dur�an, S. Eker, and J. Meseguer. Building equational proving tools by re
e
tion in rewriting logi
.In In Pro
eedings of the CafeOBJ Symposium '98. Japan Advan
ed Institute for S
ien
e and Te
hnology, 1998.[8℄ Manuel Clavel, Fran
is
o Dur�an, Steven Eker, Patri
k Lin
oln, Nar
iso Mart��-Oliet, Jos�e Meseguer, and Jos�eQuesada. Maude: spe
i�
ation and programming in rewriting logi
. Theoreti
al Computer S
ien
e, 285, 2002.[9℄ Hyang-Ah Kim and Brad Karp. Autograph: Toward automated, distributed worm signature dete
tion. InUSENIX Se
urity Symposium, 2004.[10℄ Nirman Kumar, Koushik Sen, Jos�e Meseguer, and Gul Agha. A rewriting based model of probabilisti
 distributedobje
t systems, 2003.[11℄ Nar
iso Mart��-Oliet and Jos�e Meseguer. Rewriting logi
: roadmap and bibliography. Theoreti
al ComputerS
ien
e, 285, 2002.[12℄ Jos�e Meseguer. Conditional rewriting logi
 as a uni�ed model of
on
urren
y. Theoreti
al Computer S
ien
e,96(1), 1992.[13℄ D. Nojiri, J. Rowe, and K. Levitt. Cooperative response strategies for large s
ale atta
k mitigation. In DARPAInformation Survivability Conferen
e and Exposition, 2003.[14℄ Koushik Sen, Mahesh Viswanathan, and Gul Agha. On statisti
al model
he
king of sto
hasti
 systems. In CAV,2005.[15℄ Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage. Automated worm �ngerprinting. In OSDI,2004.[16℄ Stuart Staniford. Containment of s
anning worms in enterprise networks. Journal of Computer Se
urity, 2003.8

