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Abstract

We recently established a new experimental Internet ser-
vice for creating customized source address blacklists for
DShield.org contributors. This new service utilizes a radically
different approach to blacklist formulation that we refer to as
Highly Predictive Blacklists (HPB). A highly predictive black-
list is a list of malicious Internet addresses that is formulated
through an analysis of the roughly 30 million firewall log en-
tries that are contributed to the DShield repository each day
from across the Internet. The HPB service employs a link anal-
ysis algorithm similar to the Google PageRank scheme to cross-
compare contributors in search of overlaps among the attackers
they report. The attacker addresses included within an HPB are
selected by favoring the inclusion of those addresses that have
been encountered by contributors who share degrees of overlap
with the target HPB owner. Our experiments show that highly
predictive blacklist entries consistently yield filters that are ex-
ercised at higher rates than those from conventional blacklist
methods. In addition, this increase in blacklist filter “hit rates”
can last multiple days into the future. In this paper, we provide
an overview of our algorithm and present our usage experiences.
We discuss the envisioned benefits that we believe HPBs can pro-
vide toward reducing unwanted communications for those net-
works that utilize this service.

1 Introduction

Source address blacklisting is a well-established
method for preventing undesirable network traffic from
entering one’s network. A source address blacklist repre-
sents a collection of IP addresses that have been deemed
undesirable, typically where those included addresses
have been involved in some previous illicit activity. Such
blacklists are often converted into filtering logic, fortify-
ing the port-based policies of a firewall with malicious
address blocks to be ignored in their entirety. To date, two
common methods for formulating address-based black-
lists have become well established across the Internet: the
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Local Worst Offender List (LWOL) and the Global Worst
Offender List (GWOL).

The LWOL-based blacklisting strategy is an inherently
reactive technique, which asserts filters against network
addresses that have been seen to flood, probe, or conduct
intrusion attempts against local network assets. For ex-
ample, a local network may produce an LWOL to capture
those addresses that are the most prolific producers of un-
wanted incoming packets, or that have been detected as
significant attack sources from local IDS logs. LWOLs
have the property of capturing repeat offenders that are
indeed more likely to return to the site in the future ([9]
presents experiments that demonstrate this assertion). Un-
fortunately, while an LWOL can be effective in reducing
unwanted traffic, by definition it cannot include an ad-
dress until that address has demonstrated significant hos-
tility or has saturated the local network with unwanted
traffic.

The GWOL-based blacklisting strategy addresses the
inherent reactiveness of LWOL strategies by extending
the observation pool of malicious source detectors. A
GWOL attempts to capture and share a consensus pic-
ture from many collaborating sites of the worst sources
of unwanted network traffic. For example, sites such as
DShield.org compile blacklists of the most prolific attack
sources and regularly post firewall parsable filters of these
addresses to help the Internet community fight back [6].
With approximately 1700 contributing sources providing
a daily perspective of malicious activities across the In-
ternet, DShield’s daily GWOL provides a regularly up-
dated snapshot of those Class C subnets that are among
the bane of the Internet with respect to unwanted traffic.
Unlike LWOLs, GWOLs have the potential to inform a lo-
cal network of highly prolific attackers, even when those
attackers have not (yet) been seen by the network. Un-
fortunately, the GWOL strategy also has measurable lim-
itations. For example, GWOLs often provide subscribers
with a list of addresses that will simply never be encoun-
tered at their local sites [9]. Second, GWOLs may miss
certain significant attackers that prefer to choose their tar-
gets more strategically, focusing on the known vulnerable
networks [2].
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In this paper, we introduce the Highly Predictive
Blacklist service, which is now integrated into the
DShield.org portal [10]. The HPB service employs a
radically different framework to blacklist formulation
than that of contemporary blacklist formulation strategies.
Our objective is to construct a customized blacklist per
DShield repository contributor that reflects the most prob-
able set of addresses that may attack the contributor in
the near future. Researchers have recently observed that
there are long-lived attack correlations between DShield
contributors; that is, some contributors share quite a few
common attackers. These correlations are independent of
address proximity [4]. Here, we exploit this observation
in a probabilistic inference scheme, in which future-attack
probabilities are estimated based on the previous observa-
tions of DShield log contributors and the attack sources
that have been reported by those contributors.

In formulating an HPB for a given DShield contributor,
we assign each attack source address within the reposi-
tory a rank score. The score uses historical attack patterns
to assess a source’s probability to attack the target HPB
owner in the future. Each DShield contributor is provided
a custom HPB that consists of the sources with the high-
est scores. In essence, this ranking score is derived not
by considering how many contributors the source has at-
tacked in the past (which is the case in formulating the
worst offender list), but rather by considering which con-
tributors it has attacked.

The HPB framework also employs another technique
to estimate a source’s attack probability even when it has
been observed by only a few contributors. This technique
models the contributors and their correlation relationship
as a graph. The initial attack probability derived from the
evidence (the few attacks reported) gets propagated within
this graph and the ranking score is then inferred using the
propagated probability. To compute this probability, we
employ a random walk procedure similar to the link anal-
ysis algorithm that is well known as the Google PageRank
scheme [1].

Our preliminary experiments, based on a corpus of
more than 600M DShield records collected from 1088
DShield contributors1 show that for most contributors
(more than 90%), HPB entries exhibit higher hit counts
over a multiday prediction window than contemporary
blacklist methods [9]. In the best case, one HPB of length
200 successfully predicted 195 attacks in comparison to
only two addresses from the GWOL. The results also sug-
gest that HPB’s performance is consistent over time, and
its advantage remains stable across various list lengths
and prediction window sizes.

1While DShield maintains a larger contributor set that fluctuates up
to 1700 contributors, this analysis considered only those contributors
who consistently contributed a minimum threshold of alerts throughout
the duration of the experiment.

The main contribution of this paper is the presentation
of our new experimental DShield service [10], which is
now available for public use. We provide an overview
of the HPB algorithm and its integration into the DShield
Internet portal. If successful, our HPB service has the po-
tential to offer yet more incentive for network operators
to participate in collaborative sharing schemes, such as
those embodied in [7, 3, 8]. We discuss the implementa-
tion and use of this service, and explore example experi-
ences in constructing blacklists from DShield contributor
data. We discuss the anticipated benefits of this service
in helping individual networks address the issue of reduc-
ing unwanted network traffic, and conclude with a brief
discussion of future features we plan to explore for this
service.

2 High Predictive Blacklisting in a Nutshell

Intuitively, the objective of the HPB method is to use
the target patterns of attackers stored within the repository
from the recent past to construct a probabilistic estimate
of which attackers are most likely to visit a given data
contributor in the near future. That is, we seek a ranking
scheme that tends to favor the inclusion of a source ad-
dress in a given contributor’s blacklist, if that source ad-
dress has recently been observed by other peer contribu-
tors who share a historical attacker overlap with the target
blacklist owner.

We view a window of recent attack activities as an at-
tack table. (We discuss our deployed window sizes in Sec-
tion 3.) As a simple example, Table 1 depicts a collection
of attack reports. The rows of the table represent attack
sources and the columns represent contributors (victims).
An “*” in the table cell indicates that the corresponding
source has reportedly attacked the corresponding contrib-
utor (victim).

v1 v2 v3 v4 v5

s1 * *
s2 *
s3 * * *
s4 * * *
s5 * *
s6 *
s7 *

Table 1. Attack Table

As an intuitive illustration of how HPB estimates at-
tack probabilities, consider ranking some of the sources
for victim v1. v1 shares the largest number of common
attackers with v2. Since s4 has been observed by v2, it
would be given a favored ranking score. Next, v1 and
v2 also share overlapped attackers with v3, which has it-
self encountered attacker s5. s5 would therefore also be
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slightly favored. Finally, while v1 shares no overlap at-
tacker with any other victim, v2 and v3 who are correlated
with v1 do share an overlapped attacker with v5. There-
fore, s7 which attacked v5 would be given a non-zero
score. Effectively, this favoring scheme forms a transitive
closure of overlap relations.

The HPB algorithm employs a framework that formal-
ize the above ranking intuition. In particular, we model
the correlation relationship between contributors as a cor-
relation graph. The correlation graph is a weighted di-
rected graph. The nodes in the graph are the contributors.
(We denote by m the number of nodes/contributors in the
graph.) There is an edge from node i to node j if contrib-
utor i is correlated with contributor j. The weight on the
edge is proportional to the strength of their correlation.

We refer to the unique source addresses who have been
reported within the security logs of the contributors as at-
tackers. (We observe that innocuous addresses are also
often logged. In Section 5, we discuss metrics that may
help to reduce these cases.)2 Each attacker can be associ-
ated with a vector x = {x1, x2 . . . xm} where xi = 1 if
contributor i reported this attacker, and xi = 0 otherwise.
We call such a vector the feature vector of this attacker.
Given an attacker that exhibits activities captured by x,
we would like to obtain a ranking score that reflect its
probability of future attacks. We infer this probability in
a very simple fashion: the reported attacks captured in the
feature vector form an evidence trail, each suggesting that
the source may attack in the future. The degree to which
each piece of evidence (each attack) may contribute to the
source’s attack probability on contributor i is proportional
to the weight of the edge leading from the contributor who
reported that attack to contributor i. Let W be the trans-
pose of the adjacency matrix of the correlation graph, the
ranking score can then be computed by W · x. (W · x is
a vector whose i-th entry gives the source’s ranking score
with respect to contributor i.)

One may use more sophisticated techniques such as
naive Bayesian estimation, least square regression or
maximum likelihood regression [5] to construct a ma-
trix better than W. However, there is another issue in
the above ranking framework that requires more attention.
We note that for an emerging attack source, we can claim
at best an incomplete set of observations of the attacker’s
activities. While an attack source may attack a large set
of contributors over time, during its initial activity it may
only be reported by a few contributors. The corresponding
feature vectors therefore contain only partial information.
An ideal blacklisting strategy should provide an ability to
incorporate “well-timed” filters, which do not require sat-
uration from an attacker before including it in the black-
list.

2Innocuous address inclusion is not a unique HPB issue. All black-
listing schemes must include methods to reduce their occurrence.

Toward this end, even if an attacker has not been ob-
served by contributor i, we may want to set the corre-
sponding entry xi in its feature vector to a value that re-
flects contributor i’s anticipation of being attacked by this
source. Note that our ranking score (after proper scal-
ing) can be used for this purpose. Therefore, we update
and obtain a new feature vector x(1) by the equation:
x(1) = (1−α)x(0)+α ·W ·x(0). With 0 < α < 1, the
new feature vector x(1) is a blend of our actual observa-
tion of the attacker’s activity (i.e., x(0)) together with our
anticipation of its future activity (i.e., W · x(0)).

The anticipation of future attacks is determined by the
feature vector. Once we update the feature vector (from
x(0) to x(1)), the anticipation also changes. This, in turn,
leads to an even newer feature vector. Let x(n) be the fea-
ture vector at step n in this process, we have the following
recursive relationship: x(n+1) = (1−α)x(0)+α ·W ·
x(n). With proper normalization, the sequence converges
to a stable solution. The feature vector x(∞) can then be
used to produce the ranking scores for the source.

Intuitively, this can be viewed as a probability propa-
gation process. A source’s attack probability with respect
to contributor i propagates, following the outgoing edges
of i in the correlation graph, to the neighbors of i. Each
neighbor receives a share of this probability proportional
to its strength of correlation with i. The probability re-
ceived by the neighbors is then further distributed, in the
similar fashion, to their neighbors. This process is essen-
tially similar to the random walk used in Google’s PageR-
ank link analysis.

3 Usage Scenario and Expected Benefits

The envisioned benefit of the HPB strategy is to in-
troduce a more predictive methodology for blacklist con-
struction that can lead to the adoption of more effective
dynamic firewall filters. In practice, we observe that the
filter sets of perimeter defense devices may range from
a few dozen to several hundred entries. Thus, when de-
ciding which entries to incorporate into a given perimeter
defense mechanism, the opportunity cost associated with
incorporating poor performing filters provides a key moti-
vation for our blacklist generation research. Of particular
interest for our present experimental service is to provide
blacklists that

• Exhibit a higher probability of being exercised once
they are deployed. That is, a blacklist filter is ex-
ercised when an IP address that it incorporates at-
tempts to send traffic to the target network and is
subsequently blocked. We refer to the rate at which
blacklist filters are exercised as the hit rate metric.

• Provide a timely appearance of entries in the fire-
wall filter set. That is, we believe it is preferable for
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a blacklist to not require that its included addresses
saturate the network before they are incorporated.
Better yet, a blacklist entry that has not yet been en-
countered by the network, but is subsequently exer-
cised, provides a degree of proactive protection.

With respect to the issue of timely appearance, worst
offender lists generally suffer from the fact that a source
does not achieve candidacy until it has produced a suf-
ficient mass of communications. GWOLs have the
tendency to incorporate only sources that have already
achieved mass proliferation. LWOLs are particularly lim-
ited by poor timing, as they are entirely reactive to at-
tackers that are actively pounding the local network with
unwanted traffic. With respect to the issue of hit rate,
LWOLs generally achieve a much higher hit rate than
GWOLs. Our examination of LWOL hit rates, based on
DShield contributor logs, suggests that an attacker who
is sending unwanted communications to the target will
continue sending this bad traffic over time. GWOLs, un-
fortunately, do not exhibit high hit rates for most users,
which provides the underlying motivation for extending
the DShield blacklist services with HPBs. (In Figure 1 we
will illustrate the disparity between GWOL and LWOL hit
rates, relative to their performance against HPBs. While
HPBs perform better than both strategies, they do less
well with respect to LWOL, as LWOL hit rates are nearly
uniformly higher than GWOL hit rates.)

In [9] we provide a detailed analysis of our perfor-
mance assessment of HPB blacklist construction relative
to the GWOL and LWOL strategies. Due to the length
limitations of this paper we summarize our findings here,
and refer the reader to the more in-depth discussion of
HPB performance characteristics in [9]. The analysis used
data from a 20-day window. We produced HPBs from the
first 5 days, and evaluated their hit rates for all 1088 con-
tributors over the subsequent 5-day prediction window.
We then repeated this procedure over each 5-day inter-
val for the 20-day window. The analysis processed more
than 600 million log entry contributions. Attack sources
were masked to their /24 addresses (DShield’s GWOL
also uses /24 masking). There are approximately 1.5 mil-
lion such /24s in our analysis. Table 2 summarizes the
HPB hit-rate improvements relative to equal-sized GWOL
and LWOLS constructed from the same time interval. Hit-
rate improvement is ploted as the hit count increase of
the HPB blacklist over the other two blacklists during the
5-day period that followed the construction of the black-
lists. We partition contributors into three classes corre-
sponding to each table row: (rows 1-2) contributors that
achieved improved hit counts using HPBs over GWOL
and LWOL, (rowss 3-4) contributors with a zero hit count
improvement over GWOL and LWOL, and (rows 5-6)
contributors with hit counts that faired worse using HPBs

Figure 1. HPB Hit Rate Performance vs.
GWOL and LWOL

than the GWOL and LWOL. For each group we indicate
the average, meadian, and standard deviation hit count
diffrence from using the HPB versus the corresponding
GWOL and LWOL. Our experiments indicate that HPBs
provide at least some improvement for the vast majority
of contributors who would otherwise use DShield’s tra-
ditional GWOL or their own LWOL. 3% of the DShield
contributors experienced no hit rate improvement using
either the GWOL or HPB, whereas 6% of users received
no improvement from either the LWOL or HPB. 5% of
the DShield contributors faired worse using their HPB
than using the GWOL, and 11% faired worse using HPBs
rather than LWOLs. We discuss possible reasons for good
and bad performance later in this section.

Figure 1 provides a visual assessment of the hit rate
performance of HPBs over all 1088 DShield contribu-
tors relative to comparable LWOLs and GWOLs of the
same length. All blacklists are based on a 5-day con-
struction window, with the hit rate comparison performed
over the subsequent 5-day period. The Y-axis represents
the delta-hit count change from using the HPB versus us-
ing the GWOL or LWOL. The X-axis represents the con-
tributors, and the plotted lines are independently sorted
from the most improved hit count increases to the least
improved (including negative improvement). The lower
line represents the HPB improvement over LWOL, which
as we indicated earlier have hit rates that tend to exceed
the GWOL rates. The improvement provided by HPB
over LWOL include addresses that had not been encoun-
tered previously by the local network or had not crossed
a threshold that would allow inclusion into the LWOL. In
either case, the HPBs proved to provide a degree of time-
liness in filter generation over LWOL. In general, we ob-
serve that the three blacklisting strategies do favor differ-
ent kinds of source address behavior patterns. Through an
analysis of the IP address count, unique destination port
count, and contributor count we classify source addresses
by their aggressiveness toward IP address scanning, the
breadth or selectiveness of their port sweeping, the nature
of their destination ports (malware, service, or application
ports), or combinations of these elements. For example,
the datasets contain source addresses that are observed by
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Contributor Average Median StdDev
Percentage Improvement Improvement Improvement

Improved vs. GWOL 91% 29 15 34
Improved vs. LWOL 83% 10 9 8

Neutral vs. GWOL 3% 0 0 0
Neutral vs. LWOL 6% 0 0 0

Poor vs. GWOL 5% -7 -4 8.1
Poor vs. LWOL 11% -4 -3 3.6

Table 2. Hit Count Performance: HPB vs (GWOL and LWOL) Using a 200 Entry Blacklist

hundreds of DShield contributors as they sweep thousands
of high-number ports across large IP ranges (breadth and
depth scanning). We also observe large-scale IP address
sweeping on highly selective ports with strong associa-
tion to malware, as well as other targeted port sweeps
to standard network services. While these forms of be-
havior (large-scale IP scanning) make up the entirety of
GWOL data, they are also well represented within the
HPBs of many contributors. However, HPBs dominate
the hit rate over GWOLs through their ability to also in-
corporate small-scale targeted scans that are observed by
a few contributors.

In many cases, sources that are seen by fewer contribu-
tors but are caught by HPBs are often from more concen-
trated address spans within a /16 address range. In other
cases, HPBs discover the common sources among certain
contributors that display heavy malware-port scans. For
some contributors, HPBs align very well with port sweep-
ing activity across hundreds of high-order ports, but only
targeting a few dozen or more contributors. For contrib-
utors that experience such breadth of port scanning pat-
terns, both LWOLs and HPBs (due to this strong overlap
pattern among a small set of contributors) begin to natu-
rally align. In this sense, HPBs exhibit an ability to in-
corporate sources represented from both the GWOL and
LWOL depending on the current experiences of the HPB’s
target contributor.

4 An Experimental DShield HPB Service
Release

We now discuss the release of an experimental HPB
service that is made available for free use to all DShield
data contributors. DShield began providing a global worst
offender blacklist soon after its inception, in the form of a
text file. The text file was designed to be human readable
as well as easy to parse by simple scripts. A number of
open source as well as commercial firewalls use this list.
HPBs are offered in a very similar form. To provide these
customized blacklists, a credential exchange occurs (dis-
cussed below), followed by a release of a URL containing
the contributor’s unique HPB. Our default HPB length is
200 entries.

HPBs are calculated daily for the entire contributor
base, not on demand (avoiding potential DoS conditions).
At each daily computation interval, the algorithm com-
putes the full set of HPBs for all DShield contributors
from the activity records of the previous 5-day window
(approximately 150 million record entries) within approx-
imately 40 minutes. This is done with the anticipation that
interested contributors may pull their updated HPB peri-
odically, anywhere from every 1 to 5 days. For those con-
tributors who fall into the Improved group of Table 2, the
hit rate improvement of HPBs lasts through at least the
5-day prediction window. (See [9] for a detailed experi-
mental demonstration.)

A DShield user is provided with an account to the
DShield website in order to review reports. To ease the
automatic retrieval of a user’s HPB, we do not require the
user to log in via the standard web-based procedure. In-
stead, the user can generate a unique token. This random
hexadecimal sequence will be appended to the URL and
identify the user. This token has a number of advantages
over using the user’s username and password. For exam-
ple, the user may still change the password without hav-
ing to change the information used by automated scripts
retrieving the blacklist.

To provide further protection of the integrity and con-
fidentiality of the HPB, it is offered to users via https. A
detached PGP signature can be retrieved in case https is
not available or not considered sufficient to prove the au-
thenticity of the list.

# DShield Customized HPB Blacklist
# created 2007-01-19 12:13:14 UTC
# For userid 11111
# Some rights reserved, DShield Inc.,
#
# Creative Commons Share Alike License
# License and Usage Info:
# http://www.dshield.org/blocklist.html
1.1.1.1 255.255.255.0 testnet 1
2.2.2.2 255.255.255.0 testnet 2
# End of list

Figure 2. Sample HPB File
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The HPB itself uses a simple tab delimited format. The
first column identifies the network address, and the second
column provides the netmask. Additional columns can be
used to provide more information about the respective of-
fender, like type of attacks seen, name of the network, and
country of origin. Initially, such additional columns are
intended for human review of the blacklist. All comments
start with a # mark. Figure 2 shows a sample HPB.

5 Future Work and Conclusion

We view the HPB service as a first experimental step
toward applying one branch of predictive data analysis, a
link analysis method, to the important problem of high-
quality blacklist generation. Most contemporary forms
of blacklist selection have been based on the concept of
ostricizing the worst offenders, which remains a well-
intentioned strategy with clear merit. Unfortunately, such
methods are often prone to deliver the blacklist subscriber
with filters that will seldom be exercised or that report ad-
dresses well after they have saturated one’s network. In
this paper, we present the highly predictive blacklisting
as a new alternative strategy, and discuss some prelimi-
nary testing results as well as an experimental service on
DShield to provide HPBs.

As our experimental service progresses we anticipate
the need for significant refinement and envision potential
future extensions toward continuing to increase the qual-
ity of blacklist entries that appear within the DShield web-
site. One future extension is to incorporate into blacklist
formulation attacker severity metrics that reflect the be-
nignness or aggressiveness of the attackers historical log
patterns. In practice, DShield’s current blacklist gener-
ator requires care to avoid including benign sources that
are accidentally logged by contributors, such as Internet
measurement services, web crawlers, or software update
services. These sources are also prefiltered from consid-
eration by the HPB construction algorithm. Also, a com-
mon false positive arises when servers respond slowly to
client requests, resulting in replies being blocked if the
firewall times out. In order to eliminate these logs, care
is taken to filter logs that arise from commonly timed out
services, such as TCP ports 53, 25, 80, and 443. Alterna-
tively, some addresses may be prioritized based on a com-
bination of attributes, including their propensity toward
address sweeping and malicious port scanning. Such fil-
ters and priority attributes could be incorporated into pre-
filtering mechanisms or not applied until the final blacklist
entry inclusion decisions.

There is another issue we plan to address in our future
work. Attackers who are aware of the HPB formulation
may take measures to avoid being listed. There may be
two types of such measures. An attacker can actively gen-
erate specially crafted attacks such that these attacks lead

to a different correlation patterns among the contributors.
An attacker may also take a passive measure to elude the
HPB: it computes the correlation patterns the same way
as HPB and then select targets that would not give it high
ranking score if detected. However, we believe that the
two types of measures are quite expensive for the attack-
ers, assuming that there are many attackers and they are
not colluding. In the active scenario, since the correlation
patterns are extracted from the statistics of the activities
of the whole attacker population, to affect the patterns, an
attacker (or a few attackers) has to trigger reports that are
significant in quantity comparing to that produced by the
whole population. In the passive scenario, to avoid be-
ing listed, the attacker is forced to select targets that may
not be as valuable as without HPB. In particular, the at-
tacker may have to target networks that are not interesting
to the majority of the attacker pool. Hence to avoid HPB,
it will require much more work from the attacker and it
may put the attacker in a disadvantaged position among
the attacker population. Despite this, we do think that
these attacker measures pose an issue and we would like
to investigate in the future work how to make HPB more
resilient to such measures.
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