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Abstract

We design an encryption scheme called Multi-dimensionalgea@Query over Encrypted Data
(MRQED), to address the privacy concerns related to the refparfi network audit logs and var-
ious other applications. Our scheme allows a network gateéwancrypt summaries of network
flows before submitting them to an untrusted repository. Winetwork intrusions are suspected,
an authority can release a key to an auditor, allowing thé&awuid decrypt flows whose attributes
(e.g., source and destination addresses, port numbersfatavithin specific ranges. However,
the privacy of all irrelevant flows are still preserved. Wenhally define the security for MRQED
and prove the security of our construction under the detisitinear Diffie-Hellman and decision
linear assumptions in certain bilinear groups. We studyptiaetical performance of our construc-
tion in the context of network audit logs. Apart from netwaudit logs, our scheme also has
interesting applications for financial audit logs, medijgavacy, untrusted remote storage, etc. In
particular, we show that MRQED implies a solution to its duallgpem, which enables investors
to trade stocks through a broker in a privacy-preservingmaan






1 Introduction

Recently, the network intrusion detection community has enadye-scale efforts to collect net-
work audit logs from different sites [25, 35, 24]. In this #pation, a network gateway or an
Internet Service Provider (ISP) can submit network tracestaudit log repository. However, due
to the presence of privacy sensitive information in the wekwraces, the gateway will allow only
authorized parties to search their audit logs. We constuefdllowing four types of entities: a
gateway anuntrusted repositoryanauthority, and anauditor. We design a cryptographic primi-
tive that allows the gateway to submit encrypted audit lagthé untrusted repository. Normally,
no one is able to decrypt these audit logs. However, whencioal behavior is suspected, an
auditor may ask the authority for a search capability. Whils search capability, the auditor can
decrypt entries satisfying certain properties, e.g., ngtilows whose destination address and port
number fall within a certain range. However, the privacylbétner flows should still be preserved.
Note that in practice, to avoid a central point of trust, we bave multiple parties to jointly act as
the authority. Only when a sufficient number of the paritiebaborate, can they generate a valid
search capability.

We name our encryption scheme Multi-dimensional Range QueryEncrypted Data (MRQED).
In MRQED, we encrypt a message with a set of attributes. Fanple in the network audit log
application, the attributes are the fields of a network flog,,esource and destination addresses,
port numbers, time-stamp, protocol number, etc. Amongetlasibutes, suppose that we would
like to support queries on the time-stamhe source addressand the destination port number
p. Our encryption scheme provides the following properties:

e Range query on attributes. An authority can issue a decryption key for all flows whose
(t,a,p) falls within a certain ranget. € [t1, t;] anda € [aq, as] andp € [py, po|. Notice that
range query implies equality and greater-than (smallenthests, e.gs, > t; anda = a,
andp < p;. With this decryption key, all flows whosg, a, p) tuple falls within the above
range can be decrypted.

e Security requirement. Normally, no one can learn any information from the ciphede
Under special circumstances, however, an auditor mayrobtdecryption key from an au-
thority for some range € [t1,t2] anda € [a;, as] @andp € [py, po]. For any flow, if at least
one attribute among, a, p lies outside the specified range, the auditor fails to dedityp
The auditor inevitably learns that tlig a, p) tuple of this flow does not lie within the given
range. However, apart from this information, the auditorrez learn anything more about
the flow. For example, the auditor cannot learn anything aatitibutes other thah a, p; in
addition, she cannot decide whether ¢, ort > t,, etc.

Our results and contributions. We are among the earliest to study the problem of point eAcryp
tion, range query, and conditional decryption of matchingies. We propose a provably secure
encryption scheme that allows us to achieve these propeffiable 1 summarizes the asymptotic
performance of our scheme in comparison with other appexcRlease refer to Section 2 for a
detailed comparison between our scheme MRQED, and the aemtuwork BonehWaters06 [13].
We study the practical performance of MRQED, and show thatakkes the encrypted network
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Scheme Pub. Key Size| Encrypt. Cost CT Size Decrypt. Key Size| Decrypt. Cost| Security
BonehWaters06 [13] O(D -T) O(D-T) O(D-T) O(D) O(D) MC
Naive AIBE-based O(1) O((log T)P) | O((logT)P) O((log T)P) O((log T)P) MR
Our scheme O(D -1ogT) | O(D-logT) | O(D -logT) O(D -1ogT) O((logT)P) MR

Table 1: Performance of different approachds.denotes the number of dimensions ahdhe
number of points in each. The naive AIBE-based scheme is ibescin Section 4.3. MC and
MR refer to thematch-concealingndmatch-revealingecurity models respectively as defined in
Section 3.

audit log application feasible. We also study the dual groblo MRQED, where one encrypts un-
der a hyper-range in multi-dimensional space, and decypder a point. We show that MRQED
implies a solution to its dual problem, which enables investo trade stocks through a broker in
a privacy-preserving manner.

Paper organization. In the remainder of this section, we give more example appbos of
MRQED. We review related work in Section 2, and formally detime MRQED problem in Sec-
tion 3. In Section 4, we demonstrate some initial attemptoastructing MRQED; while in Sec-
tion 5, we describe our novel construction which we considemain contribution of this paper.
We note that the purpose of Section 4 is not only to exhibéveétman schemes, but also to better
motivate our design of MRQED as described in Section 5. Iniqddr, some of the primitives
introduced in Section 4 will later be used in Section 5 whenewplain our novel construction.
Due to limit of space, formal security proofs of security previded in Appendix C. In the proof,
we borrow techniques from the AHIBE scheme of Boyen and Watksk [As a result, the se-
curity of our construction is likewise based on the hardradd3ecision Bilinear Diffie-Hellman
problem and the Decision Linear problem. In Section 7, wesizar the practical performance of
the scheme in the context of network audit logs. We show tHRQ¥D implies a solution to its
dual problem in Section 8, and show that the dual problem gdifcular interest to investors who
would like to trade stocks through a broker in a privacy-presg manner.

1.1 Application to Network Audit Logs

We briefly mentioned network audit logs at the beginning of #ection. Throughout the paper,
we will keep using this example to motivate the design of MRQE®D provide context for the
remainder of the paper, we now describe this applicatiomeatgr detail.

Firewalls and network intrusion detection systems (NID&)hsas Snort [43], Emerald [40],
and Bro [39] produce logs summarizing detected or blockeiies suspected to be malicious.
Log entries typically correspond to either a single packetliaps rejected by a firewall) or an
established flow deemed suspicious. Each entry normallydes fields such as source and desti-
nation IP address and port, date and time, protocol (e.g., DOP, or ICMP), and, in the case of
NIDS, the type of rule causing an alert. Sharing and compgasiurth logs across organizations is a
method for gaining broader information about maliciousvitets on the Internet so that adminis-
trators may better protect their systems. Current large €tfdrts to collect and aggregate network
audit logs for this purpose include DShield [25], myNetWe@n [35], and Deepsight [24].



However, sharing of network audit logs is hampered by thegiree of security and privacy
sensitive information. By encrypting each log entry befaading it to another party, the source
can allay these concerns. Later, the source may releaseygptiec key for a carefully specified
set of log entries deemed currently relevant. For exampfgase a particular host with IP address
a, is determined to have been compromised at tipand later involved in scanning other hosts for
vulnerabilities on a certain range of pofts, p2|. A trusted authority may then choose to release a
key decrypting any entries at tintewith source address connecting to porp such that > ¢,

a = ay, andp; < p < p,. Note that to avoid a central point of trust, we can have mldtparties
jointly act as the authority. Using techniques from secuudtinparty computation [27], only when

a sufficient number of them collaborate, can they generatalid gdecryption key. The source
would then have precise guarantees about the privacy af mleéivork while providing useful
information to other individual organizations or a globadmitoring effort. The public key nature
of the scheme would allow distributed, encrypted submissto a central monitoring organization
possessing the master private key and giving out decryjiggs as necessary. There have been
some previous attempts to protect the security of audit fligsugh encryption or anonymization
while allowing limited queries [46, 23, 33], but in no preu®scheme has it been possible to
issue keys for conjunctions of ranges over multiple attebwvhile maintaining the secrecy of the
attributes. In particular, we are not aware of any previoeshod supporting queries such as our
example of(t >t;) A (a=a1) N (p1 <p<p,) that does not require either revealing the attribute
values or issuing an exponential number of key components.

1.2 Other Applications

Apart from the network audit log application, and the sto@ding application described in Sec-
tion 8, we mention here some other potentially interestmgiaations of MRQED.

Financial audit logs. Financial audit logs contain sensitive information abonéficial transac-
tions. Our MRQED scheme allows financial institutions to askeaudit logs in encrypted format.
When necessary, an authorized auditor can obtain a deanygofrom a trusted authority. With
this decryption key, the auditor can decrypt certain tratisas that may be suspected of fraudulent
activities. However, the privacy of all other transactiams preserved.

Medical privacy. Consider a health monitoring program. When Alice moves aboter daily
life, a PDA or smart-phone she carries automatically deép@sicrypted crumbs of her trajectory
at a storage server. Assume that each crumb is of the formw, ¢), ct), where(x, y) represents
the location,t represents time, and is Alice’s contact information. During an outbreak of an
epidemic, Alice wishes to be alerted if she was present aeasrne with the disease during an
incubation period, i.e., ifz, y, t) falls within a certain range. However, she is also concewmiéu
privacy, and she does not wish to leak her trajectory if sterfta been to a site borne with the
disease.

Untrusted remote storage.Individual users may wish to store emails and files on a resereer,
but because the storage server is untrusted, the contentb@@ncrypted before it is stored at
the remote server. Emails and files can be classified withigiaftensional attributes. Users may
wish to perform range queries and retrieve only data thafgdahe queries.
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Using biometrics in anonymous IBE.The MRQED scheme can also be used in biometric-based
Anonymous Identity-Based Encryption (AIBE). Using biomesrin identity-based encryption first
appeared in the work by Sahai and Waters [41]. In this apbicaa person’s biometric features
such as finger-prints, blood-type, year of birth, eye coétc,, are encoded as a poiKtin a
multi-dimensional lattice. Personal data is encryptedgishe owner’s biometric features as the
identity, and the encryption protects both the secrecyeptrsonal data and the owner’s biometric
identity. Due to potential noise each time a person’s bioimétatures are sampled, a user holding
the private key for biometric identit)X should be allowed to decrypt data encrypted unsér

iff X’ andX have small distance. In particular, the SahaiWatersO4tagri®n [41] considered
theset-overlapdistance (or thélammingdistance); and their encryption scheme does not hide the
identity of the user. Our construction allows a user withgheate key for identityX, to decrypt an
entry encrypted undex’, iff /. (X, X’) < e. Here/,, denotes thé,, distance betweeK andX’,

and is defined amax{|z, — 2|, ...,|zp — 25|}. In this case, the decryption region is a hyper-
cube in multi-dimensional space. One can also associatéeaetit weight to each dimension, in
which case the decryption region becomes a hyper-rectangle

2 Related Work

Search on encrypted data. The problem of search on encrypted data (SoE) was introdiunced
the symmetric key setting by Song et al. [44] and has had secent improvements in security
definitions and efficiency [21]. Boneh et al. [10] later propod$ublic Key Encryption with Key-
word Search (PEKS), in which any party possessing the plielccan encrypt and the owner
of the corresponding private key can generate keyword Bezapabilities. Both SoE and PEKS
can be trivially extended to support one-dimensional raqgries; the extension is similar to the
MRQED' scheme described in Section 4.2. However, it is not cleardtizer can be used to con-
struct a scheme supporting range queries over multiplbatiss. Recent work on traitor-tracing
systems [14, 12] allows a more specialized sort of rangeyqu&iven a ciphertexC with at-
tributesX = (x1,zs,...,2p), a master key owner can issue a token for some valteat allow
us to decide whether, < 2/ for all 1 < d < D with O(v/T) ciphertext size and token size.
Applications of searchable encryption have been studiethéylatabase community [30, 22, 2].
Other works related to searches on encrypted data inclullecals RAMs [37, 28], and private
stream searching [5, 38].

IBE. The notion of Identity-Based Encryption (IBE) was introdudad Shamir [42]. Several
IBE schemes [20, 11, 7, 6, 18, 45, 36], hierarchical IBE (HIBR)esues [31, 26, 8, 47], and
applications [41, 29] were proposed since then. In padigcuhe HIBE scheme proposed by
Boneh, Boyen, and Goh [8] can be extended to multiple dimesgidPRHIBE) efficiently and
in a collusion-resistahtmanner. The resulting scheme can be used to solve a probieifarsio
MRQED, but lacking the third property in the previous discoss That is, when using M-HIBE
it would not be possible to hide the attribute values assediwith a ciphertext.

1Collusion-resistance, in this sense, means that two pasti® have been issued different decryption keys cannot
combine their keys in some way to allow decryption of cipletd that neither could decrypt previously.



Anonymous IBE. Recently, researchers have proposed anonymous IBE and HIBEssi{AIBE,
AHIBE) [15, 1]. The notion of anonymity is also related to keyvpcy [4, 3]. Like the HIBE
scheme mentioned above, the AHIBE scheme of Boyen and Watdrsdth be extended to mul-
tiple dimensions in a collusion-resistant manner, resglin a Multi-dimensional AHIBE (M-
AHIBE) scheme. An M-AHIBE scheme could be used to implement MRQcluding the
third property), but applying it directly would have a sersodrawback. Because the encryption is
anonymous and hides the attributes used as the public keyyeabf decryption one would need
to try all possible decryption keys on a given ciphertextisThcursO(T?) decryption cost on a
single ciphertext, wher# is the number of possible values each attribute may assuchean be
quite large. Nevertheless, on a technical level, this AHIBEesne and its extension to M-AHIBE
are the most closely related work to ours. In particular, wevent collusion in the same way
the M-AHIBE construction does. Since we do not require the delggation property of HIBE
schemes, however, we are able to improve decryption cost kogarithmic in7.

Recent developments.Concurrent to our work, Boneh and Waters [13] propose anotber ¢
struction (BonehWaters06 in Table 1) for complex queries everypted data. They propose a
primitive called Hidden Vector Encryption, and use it in porctive range and subset queries.
When applied to multi-dimensional range query, their schessalts inO(DT') encryption time,
ciphertext size, and public key size, atdD) decryption key size and decryption cost. As in
Table 1,D andT are the number of attributes and the number of discrete sdtwesach attribute.
Their scheme is more expensive in terms of public key sizeryption cost and ciphertext size;
but saves on decryption key size and decryption cost. Iniggjns with largel” and smallD
(e.g., network audit logs, and the stock trading applicatieentioned in Section 8), our approach
is more appropriate. In particular, for network audit logs= 232 for an IP address, anB may
range from2 to 4. In other applications wher® is large andl" is small, the BonehWaters06
construction is more appropriate. We also would like to roée the BonehWaters06 construction
achieves a stronger notion of security. Their construdtides the attribute values, even when the
message is successfully decrypted. This stronger seqmoperty is a key difference from our
construction, in which the attribute values are revealezhuguiccessful decryption. In Section 3,
we name these two different security modedlatch-concealingecurity andnatch-revealinge-
curity respectively. For applications like encrypted natkvaudit logs, it is acceptable to reveal
the attributes of a message when it is successfully deaty®g relaxing the security definition
to allow this possibility, we achiev® (D logT") encryption time, ciphertext size, and public key
size. This makes applications such as the encrypted netauwatit logs possible. However, one
may conceive of other applications where the stronger ggawtion is necessary.

3 Problem Definition and Preliminary

3.1 Problem Definition

In the network audit log application, a gateway encryptsvoeit flows, and submits them to an
untrusted repository. When necessary, an auditor may askithordy for a key that allows the
decryption of all flows whose attributes fall within a centaange; while the privacy of all irrelevant



flows are still preserved. There is a geometric interpreatid these multi-attribute range queries.
Suppose that we would like to allow queries on these threésfigime-stamg, source address
a, and destination pont. The tuple(t, a, p) can be regarded as a poiKtin multi-dimensional
space. Now suppose we query for all flows wheose, p falls within some ranget € [tq, 5],

a € [ay,as] andp € [p1,p2]. Here the “hyper-rangeft,, ts] X [a1,as] x [p1,p2] forms a hyper-
rectangleB in space. The above range query is equivalent to testinghehatpointX falls inside
the hyper-rectang|B.

We now formally define these notions mentioned above. Asghiaiean attribute can be en-
coded using discrete integer valueshrough7'. For example, an IP address can be encoded
using integerd through232. We use the notatiofi'] to denote integers fromto 7, i.e., [T] =
{1,2,...,T}. LetS < T be integers, we usk,T] to denote integers fron§ to 7" inclusive,
e, [S,T] = {S,S +1,...,T}. Throughout this paper, we assume tliais a power of 2, and
denotelog, as simplylog. Suppose that we would like to support range queriePadifferent
attributes, each of them can take on valueglin, [13], . . ., [Tp] respectively. We formally define
a D-dimensional lattice, points and hyper-rectangles below.

Definition 1 (D-dimensional lattice, point, hyper-rectangléet A = (71,75, ...,Tp). La =

[T1] x [T3] x ... x [Tp] defines aD-dimensional lattice. A D-tuple X = (z1,x,...,2zp) de-

fines apoint in LA, wherez, € [T,](Vd € [D]). A hyper-rectangle B in L, is defined as
B(Sl,tl,SQ,tQ,...,SD,tD) = {(l’l,ﬂjg,...,l’D)}Vd € [D],l’d € [Sd,td]} (Vd € [D],l < sg <

tg < Ty).

A MRQED scheme consists of four (randomized) polynomialetaigorithmsSetup, Encrypt,
DeriveKey andQueryDecrypt. In the network audit log example, an authority ridetup to
generate public parameters and a master private key; agatews thédEncrypt algorithm to en-
crypt a flow. Encryption is performed on a péWsg, X). The messag®lsg is an arbitrary string,
andX is a point in multi-dimensional space, representing thibaties. For example, suppose that
we would like to support queries on the following three Atites of a flow: time-stamfy source
addressi, and destination pogt. The tuple(t, a, p) then becomes the poidd, and the entire flow
summary forms the messa@dsg. Whenever necessary, the authority can runlikeiveKey
algorithm, and compute a decryption key allowing the detoypof flows whose attributes fall
within a certain range. Given this decryption key, an audiims theQueryDecrypt algorithm
over the encrypted data to decrypt the relevant flows. We oomdlly define MRQED.

Definition 2 (MRQED). An Multi-dimensional Range Query over Encrypted Data (MRQE
scheme consists of the following polynomial-time randodnaggorithms.

1. Setup(3,La): Takes a security paramet&rand D-dimensional latticéL, and outputs
public keyPK and master private keyK.

2. Encrypt(PK, X, Msg): Takes a public kePK, a pointX, and a messagdelsg from the
message spadd and outputs a ciphertexi.

3. DeriveKey(PK, SK, B): Takes a public kePK, a master private ke§K, and a hyper-
rectangleB and outputs decryption key for hyper-rectanBle
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4. QueryDecrypt(PK, DK, C): Takes a public keyPK, a decryption keyDK, and a ci-
phertextC and outputs either a plaintekisg or L, signaling decryption failure.

For each messagelsg € M, hyper-rectangl@ C L, and pointX € LA, the above algo-
rithms must satisfy the following consistency constraints

Msg if X e B

Decrypt(PK, DK, C) = !
QueryDecrypt(PK, ,C) {L w.h.p.,ifX ¢ B @

whereC = Encrypt(PK, X, Msg) andDK = DeriveKey(PK, SK, B).

3.2 Security Definitions

Suppose that during time,, 5|, there is an outbreak of a worm characteristic by the portberm
p1. Now the trusted authority issues a key for the rahgelt,, to] andp = p; to a research group
who has been asked to study the worm behavior. With this keyt@search group should be able
to decrypt only flows whose time-stamp and port number fathiwithe given range. The privacy
of all other flows should still be preserved. Informally, pope that a computationally bounded
adversary has obtained decryption keys for regiBpsB,, . . ., B,. Now given a ciphertexC =
Encrypt(PK, X, Msg) such thatX ¢ B, B,,...,B,, the adversary cannot lea or Msg
from C. Of course, since the adversary fails to decigpusing keys for region8,, B,, ..., B,,
the adversary inevitably learns that the paxaencrypted does not fall within these regions. But
apart from this fact, the adversary cannot learn more in&bion aboutX or Msg.

We now formalize this intuition into aelective securitgame for MRQED. Here, the selective
security notion is similar to the selective-ID security f8E schemes [16, 17, 6]. We prove the
security of our construction in the selective model. A sgg@nsecurity notion is adaptive security,
where the adversary does not have to commit to two pointsainih stage of the security game
defined below. In Appendix D, we give a formal definition foaptive security, and state how it
is related to the selective security model.

Definition 3 (MR-selective security)An MRQED scheme iselectively secure in the match-
revealing (MR) model if all polynomial-time adversaries have at mosiegligible advantage in
the selective security game defined below.

e Init: The adversary submits two poinX;, X; € L where it wishes to be challenged.

e Setup The challenger runs tigetup (3, LA ) algorithm to generatPK, SK. It givesPK
to the adversary, keepirRj< secret.

e Phase 1 The adversary adaptively issues decryption key queriegftyper-rectangles
B,,B,,...,B,. FurthermoreX andX; are not contained in any hyper-rectangles queried
in this phase, i.e., fob < i < qo, X§ ¢ B;, andX; ¢ B,.

e Challenge The adversary submits two equal length messadeg,, Msg, € M. The
challenger flips a random coih, and encryptdVIsg, underX;. The ciphertext is passed to
the adversary.



Phase 2 Phase 1 is repeated. The adversary adaptively issuesptiearkey queries for
q— qo hyper-rectangleB, 1, B, 12, ..., B,. As before, all hyper-rectangles queried in this
stage must not contai andXj.

Guess The adversary outputs a guéssf b.

An adversaryA’s advantage in the above game is definedas 4(X) = \Pr[b =] — %\

We would like to note that a stronger notion of security isgiioie as defined by Boneh and
Waters in their concurrent work [13]. We call this strongecwrity notionmatch-concealing (MC)
security since it requires that the attribute values (i.e., the pXipremain hidden even when an
entry matches a query. MC-selective security can be forna@fyned through the following game
between an adversary and a challenger.

Definition 4 (MC-selective security [13])An MRQED scheme &&lectively secure in the match-
concealing (MC) model if all polynomial-time adversaries have at mosegligible advantage in
the selective security game defined below.

Init : The adversary submits two poinXs;, X; € L where it wishes to be challenged.

Setup The challenger runs tigetup(32, L A ) algorithm to generatPK, SK. It givesPK
to the adversary, keepir§iK secret.

Phase 1 The adversary adaptively issues decryption key queriegftyper-rectangles
B, B,,....B,,, satisfying the condition that for all < ¢ < ¢, either(Xj, € B;) A (X} €
B;), or (X ¢ B)) A (X7 ¢ By).

Challenge The adversary submits two equal length messadasg,, Msg, € M. Ifin
Phase 1, there exists soie< i < ¢, such that X} € B;) A (X} € B;), thenMsg, =
Msg,. The challenger flips a random coif,and encrypt®Isg, underX;. The ciphertext
is passed to the adversary.

Phase 2 Phase 1 is repeated. The adversary adaptively issuesptiecrkey queries for
hyper-rectangle®8,, .1, B, 12, - - . . B,, satisfying the condition that for all, < ¢ < g,
either(X§ € B;) A (X5 € By), or (X ¢ B;) A (X} ¢ B;). In addition, if in the Challenge
stage Msg, # Msg,, thenforallg, < i < ¢, (X§ ¢ B;) A (X} ¢ B;).

Guess The adversary outputs a guéssf b.

Likewise, an adversary’'s advantage in the above game is definedds 4(X) = |Pr[b = b'] — 1|.

In this paper, we use the MR security model, i.e., we do ndegtdhe privacy of the attributes
if an entry is matched by the query. This security notion saffifor applications such as network
audit logs, and the stock-trading application as describ&ection 8.



3.3 Preliminary: Bilinear Groups

A pairing is an efficiently computable, non-degenerate fionce : G x G — G, satisfying
the bilinear property that(¢",g3°) = e(g,9)"*. G, G andG’ are all groups of prime ordery,

g ande(g,g) are generators dk, G andG’ respectively. Although our MRQED scheme can be
constructed using asymmetric pairing, for simplicity, wesdribe our scheme using symmetric
pairing in the remainder of the paper, i.6.= G.

We name a tuplé& = [p, G, G/, g, e| a bilinear instance, wher@ andG’ are two cyclic groups
of prime orderp. We assume an efficient generation algorithm that on inpatsafcurity parameter
5, outputsG £ GenX) wherelog, p = O(%).

We rely on the following complexity assumptions:

Decision BDH Assumption The Decision Bilinear DH assumption, first used by Joux [Bkr
used by IBE systems [11], posits the hardness of the follownoglem:

Given[g, g**, g%, g%, Z] € G* x G/, where exponents,, 2, z3 are picked at random frof#,,
decide whetheZ = e(g, g)****%.

Decision Linear Assumption The Decision Linear assumption, first proposed by Boneh, Boye
and Shacham for group signatures [9], posits the hardnakge ébllowing problem:

Given|g, g™, g*2, "%, g*2*, Z] € G, wherez, 2y, 23, 24 are picked at random frof#,, de-
cide whetherZ = g1,

4 A First Step towards MRQED

In this section, we first show a trivial construction for MRQEiich hasO(727) public key
size,O(T?P) encryption cost and ciphertext size(1) decryption key size and decryption cost.
Thenin Section 4.2, we show that using AIBE, we can obtain gmawed one-dimension MRQED
scheme. Henceforth, we refer to a one-dimension MRQED schsitRQED and refer to multi-
dimension MRQED as MRQED. The AIBE-based MRQEDconstruction ha$)(1) public key
size,O(log T') encryption cost, ciphertext size, decryption key size aachyption cost. While
describing the AIBE-based MRQEDRonstruction, we introduce some primitives and notations
that will later be used in our main construction in SectiombSection 4.3, we demonstrate that a
straightforward extension of the AIBE-based MRQE2heme into multiple dimensions results in
O ((log T)D) encryption cost, ciphertext size, decryption key size agatyption cost. The AIBE-
based MRQED construction aids the understanding of our main constradti Section 5. By
contrast, details of the AIBE-based MRQERcheme are not crucial towards the understanding
of our main construction. Therefore, we only highlight a femportant definitions and give a
sketch of the scheme in Section 4.3. We give the detailedigéisn of the AIBE-based MRQED
scheme in Appendix F.



1D,

1D
WO
1D
[3.7]
(@) The path from a leaf to the (b) A ciphertext and a decryption key in MRQED

root.

Figure 1: An MRQED' scheme. (a) Path from the leaf node representinge [T to the root. P(z) =
{IDy,1D+,IDs,1D,}. (b) Encryption under the point = 3 and the keys released for the range7].

4.1 Trivial Construction

We first give a trivial construction for one-dimensionalgarguery over encrypted data. We refer
to one-dimensional range query over encrypted data as MR@HBre the superscript represents
the number of dimensions.

In the trivial MRQED' construction, we make use of any secure public key encnygtiheme.
We first generat@®(7?) public-private key pairs, one for each ranget] C [1,7]. To encrypt a
messagéIsg under a point:, we produce)(7?) ciphertexts, one for each ranget] C [1,7].

In particular, ifz € [s, t], we encryptMsg with public keypk, ;; otherwise, we encrypt an invalid
messagel with pk, .. The decryption key for any range ¢ is thensk, ;, the private key fofs, t].
In Appendix E, we give a formal description of this trivialresiruction.

One can extend this idea into multiple dimensions. The tiesuMRQED” scheme requires
that one encrypig(Msg, X) for all hyper-rectangleB in space. Therefore, the trivial MRQED
scheme ha®(7?P) public key sizeD(T*") encryption cost and ciphertext size(1) decryption
key size and)(1) decryption cost.

4.2 Improved MRQED! Construction Based on AIBE

We show an improved MRQED construction based on AnonymoustitgieBased Encryption
(AIBE). For clarity, we first explain the construction for odénension. We call the scheme
MRQED! where the superscript denotes the number of dimensions. dtéetinat the primitives
and notations introduced in this section will be used in oaimeonstruction.

4.2.1 Primitives: Efficient Representation of Ranges

To represent ranges efficiently, we build a binary interke tover integers through7'.

Definition 5 (Interval tree) Lettr(7") denote a binary interval tree over integers frarto 7". Each
node in the tree has a pre-assigned unique. For convenience, we defingT’) to be the set of
all node I Ds in the tree. Each node itx(7T") represents a range. Let/(/D) denote the range
represented by nodeD € tr(T). Definecv(ID) as the following: Let/ D be thei'" leaf node,
thencv(/D) = i. Otherwise, whe D is an internal node, lef D, and I D, denote its child nodes,
thencv(/D) = cv(ID;) Ucv(ID,). In other wordscv(/ D) is the set of integers that correspond
to the leaf descendants 6D.
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Given the interval treer(T'), we define thé?(x) of I Ds covering a point: € [1, 7], and the
setA(x) of I Ds representing a range ¢] C [1, 7.

e Set of I Ds covering a pointz. For a pointz € [1,7] and some nodéD < tr(T'), we
say that/ D coversthe pointx if 2 € cv(/D). DefineP(x) to be the set of Ds covering
pointz. Clearly,P(z) is the collection of nodes on the path from the root to the fexfe
representing:.. As an example, in Figure 1 (8J(z) = {ID1,1Ds, D3, ID,}.

e Range as a collection off Ds. A range[s,t] C [1,7] is represented by a collection of
nodes:A(s,t) C tr(T). We defineA(s, t) to be the smallest of all subsé{sC tr(7") such
that(J, ,oy cv(I D) = [s, t]. Itis not hard to see that for ay, t] C [1, T, A(s,t) is uniquely
defined, and its sizg\(s, )| is at mostO(log 7).

We will make use of the following properties in our AIBE-basamhstruction: Ifx € [s, ],
thenP(z) N A(s,t) # 0; in addition,P(x) and A(s, t) intersect at only one node. Otherwise, if
x ¢ [s,t], thenP(x) N A(s, t) = 0.

4.2.2 AIBE-Based MRQED Scheme

AIBE encrypts a messagklsg using an identity/ D as the public key. Given the private key
for 1D, one can successfully decrypt all messages encrypted Iyitidd D. The encryption
scheme protects both the secrecy of the mesbége and the identityl D in the following sense:
Given ciphertextC, which is an encryption oMsg by identity I Dy, and given decryption keys
for identitiesI Dy, ID,, ..., 1D, but not for I D,, a computationally bounded adversary cannot
learn anything abouMsg or about/ D, from the ciphertex{C. Researchers have successfully
constructed secure AIBE schemes [15, 1] witfl) cost in all respects: in public parameter size,
encryption cost, ciphertext size, decryption key size asxyption cost.

Given a secure AIBE scheme, we can construct an MRQ&heme based on the following
intuition. To encrypt the messa®dsg under pointz, we encrypiMsg under all/ Ds inPP(x). To
release the decryption key for a ranget| C [1, 7], we release the keys for allDs in A(s,t).
Now if z € [s, t], thenP(x)NA(s, t) # 0. Suppos@(z) andA(s, t) intersect at nodéD. Then we
can apply the decryption key aD to the ciphertext encrypted undep, and obtain the plaintext
messageéMsg. Otherwise, ifr ¢ [s,t], thenP(x) N A(s,t) = 0. In this case, the security of
the underlying AIBE scheme ensures that a computationallyned adversary cannot learn any
information about the messa@dsg or the pointz, except for the obvious fact (since decryption
fails) thatz ¢ [s, .

Example. In Figure 1(b), we show a ciphertekt encrypted under the point Let L = O(logT')
denote the height of the tre€} is composed o) (log T') componentsi{ci,ca,...,cp}. On the
right, we show the decryption keys for the ranggr|. Since[3, 7] can be represented by the set of
nodesA(3,7) = {IDa,IDg,ID¢}, the decryption key fof3, 7] consists of three sub-keys;p ,,
kIDB andk[Dc.

The AIBE-based construction hag1) public key sizeO(|P(x)|) encryption cost and cipher-
text size, and (|A(s, t)|) decryption key size. Sind®(x)| = O(log T'), and|A(s, t)| = O(log T'),
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we getO(log T') in encryption cost, ciphertext size, and decryption keg slzater, we will show
that decryption can be done @(log ") time as well.
Stated more formally, given a secure AIBE scheme

[ Setup®(X), DeriveKey*(PK,SK, ID), Encrypt*(PK, /D, Msg), Decrypt*(PK,DK,C) |,
one can construct a secure MRQESzheme as below:
e Setup(X, T) callsSetup*(X) and outputP K andSK.

e Encrypt(PK, x, Msg) encrypts the messagelsg under every/D € P(x). In other
words,Encrypt yieldsC = {C]D‘[D € P(m)}, wherec;p = Encrypt*(PK, 1D, Msg||0™).
To check whether a decryption is valid, prior to encryptiare,appendnr’ trailing Os denoted
0™ to messag®lsg € {0,1}™.

e DeriveKey(PK, SK, [s,t]) releases a decryption ké&yp for eachID € A(s,t). kip is
computed a%;p = DeriveKey"(PK, SK, /D). The entire decryption key for the range
[s, ] is then the seDK,, = {k;p | ID € A(s,t)}.

e QueryDecrypt(PK, DK, C) tries each kek;p € DK, on each ciphertext;, € C. If

ID = ID', thenDecrypt*(PK, k;p, ¢;p) yields result of the forrr]}\//Is\gHOm’. In this case,
we accept the result and exit tkueryDecrypt algorithm. If all trials fail to yield result

of the forml\//[s\g||0m', QueryDecrypt outputs |, indicating failure to decrypt.

Note that in the AIBE-based construction, if we simply trydgicryption keys over all cipher-
texts, then decryption would requit¥ |P(z)|-|A(s, t)|) time; and sincéP(z)| = O(log T'), |A(s,t)| =
O(log T'), decryption would requir@®(log® T') time. However, observe that it is not necessary to
try k;p onc;pr, if 1D andI D’ are at different depth in the tree; since théh,and/ D’ cannot be
equal. Thus we only need to tky, onc;p if ID andl D’ are at the same depth in the tree, which
requires knowledge of the depth 6D’ for ciphertextc; .. Of course, we cannot directly release
1D’ for ciphertexic;p/, since the encryption is meant to hidl®’. However, since each ciphertext
C has a portion at every depth of the tree, we can give out ththag D’ for eachc;p € C
without leaking any information abouit)’. In this way, we reduce the decryption costifog T")
rather tharO(log” T).

We emphasize that using AIBE as the underlying encryptiormsehis crucial to ensuring
the security of the derived MRQEBcheme. In particular, a non-anonymous IBE scheme is not
suitable to use as the underlying encryption scheme, sBiEéehldes only the messaddsg but
not the attributer.

4.3 AIBE-Based MRQED” Construction

The same idea can be applied to construct an MRQEEheme, resulting i®(1) public key size,

O ((log T)D) encryption cost, ciphertext size, decryption key size, dadryption cost. Since
the details of this construction is not crucial to the untierding of our main construction, we
only give a sketch here and leave the full description of tieeme to Appendix F. However, we
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highlight a few important definitions here, including thetioo of a simple hyper-rectangle, and
the definition ofA*(B). These definitions will later be used in our main constructio

We build D binary interval trees, one for each dimension. We assigmolaadlly uniquel/ D to
each node in thé trees.

Representing a hyper-rectangle. We represent an arbitrary hyper-rectangle as a collection o
simple hyper-rectanglego illustrate this idea, we first give a formal definition ofianple hyper-
rectangle, and then state how to represent an arbitraryriigptangle as a collection of simple
hyper-rectangles. Simply put, a simple hyper-rectangéehgper-rectangl®, in space, such that
B, can be represented by a single node in the tree of every diamerdore specifically, a hyper-
rectangleB(sy,t1, ..., sp,tp) in space is composed of a range along each dimension. Ififor al
1 <d < D,|A(sq,tq)| = 1, 1i.e.,[sq, 4] is @ simple range in thé" dimension, then we say that
the hyper-rectangl®(s;,t,...,sp,tp) is asimple hyper-rectangleA simple hyper-rectangle
can be defined by a single node from each dimension. We cagnassinique identity to each
simple-rectangl@(sy,t1,...,Sp,tp) in space. Define

idg, = (IDy,ID,...,1Dp),
wherel D,(1 < i < D) is the node representingy, ¢4 in thed" dimension.

Definition 6 (Hyper-rectangle as a collection of simple hyper-rectagglGiven an hyper-rectangle
B(sy,t1,...,5p,tp), denoteAy(B) := A(sq, tq) for d € [D]. A(B) is the collection of nodes
representing rangés,, t4] in the d'* dimension. The hyper-rectangl® can be represented as a
collectionA*(B) of simple hyper-rectangles:

A*(B) = A1(B) x Ay(B) x ... x Ap(B)

In particular, for everyid € A*(B), id is a vector of the formd/D;,ID,,...,1Dp), wherel D,
(d € [D]) is a node in the tree corresponding to & dimension. Thereforéd uniquely specifies
a simple hyper-rectanglB, in space.

Clearly, [A*(B)| = O ((logT)"); in addition, A*(B) can be efficiently computed. Given
the above definitions, we briefly describe the AIBE-based MROEDNstruction. The detailed
description is provided in Appendix F.

Encryption. Suppose that now we would like to encrypt a messhbe and the pointX =
(x1,m9,...,zp). We encrypt the messa@ddsg under all simple hyper-rectangles that contain the
pointX = (zy,x9,...,2p). This is equivalent to encryptinlyIsg under the cross-product @?
different paths to the root. Specifically, fdre [D], denotePy(X) := P(z4). Py(X) is the path
from the root to the leaf node representingin thed'* dimension. Define the cross-product of all
D different paths to the root:

PX(X) = P, (X) x By(X) x ... x Pp(X).

Then, to encrypMsg andX, we use AIBE to encrypMsg under everyd € P*(X). Since
IP*(X)| = O ((log T)?), both encryption cost and ciphertext size @é(log 7)”).

Key derivation and decryption. To issue decryption keys for a hyper-rectanBlewe issue a key
for everyid € A*(B). Since|A*(B)| = O ((log T")"), the decryption key has size ((log T)”).
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(a) A ciphertext and a decryption key in MRQED (b) Collusion.

Figure 2: An MRQED? scheme. (a) Encryption under the point = (3, 5) and the keys released for the
range(2,6] x [3,7]. (b) With decryption keyk, 1, k,; for region R; andk,z, k2 for region Ry, regionsRy
and Rz are compromised.

Now if X € B, thenP*(X) N A*(B) # 0; in addition,P*(X) andA* (B) intersect at exactly one
simple hyper-rectanglelg,, where the keys and the ciphertexts overlap. In this caseisedhe
key foridg, to decrypt the ciphertext fadg,. Otherwise, ifX ¢ B, thenP*(X) N A*(B) = 0.
In this case, the security of the underlying AIBE schemes m@sstie security of the MRQED
constructions. In Appendix F, we show that the cost of detoygs alsoO ((log T)D).

5 Our MRQED ? Construction

In Section 4, we showed an AIBE-based MRQERonstruction withO(1) public key size,
O ((log T)P) encryption cost and ciphertext siz@,((log 7')”) decryption key size and decryp-
tion cost. In this section, we propose a new MRQEBonstruction withO (D logT') public
key size,O (DlogT) encryption cost and ciphertext siz@,(D log T') decryption key size, and
O ((log T)”) decryption cost.

5.1 Intuition

We build D interval trees over integers frointo 7', each representing a separate dimension. As-
sume each tree node has a globally unigi®e In the previous section, we showed a naive con-
struction for MRQED’ based on AIBE. The naive construction encryitsg under theO ((log T')7)
simple hyper-rectangles that contain the pdintand releases decryption keys for th&(log 7))
simple hyper-rectangles that compose a hyper-rectddgl®ur goal is to reduce the ciphertext
size and decryption key size t0(D log T') instead. However, as we will soon explain, naively
doing this introduces theollusion attackas shown in Figure 2 (b). Our main technical challenge,
therefore, is to devise ways to secure against the collaiack.

Reducing the ciphertext sizeln other words, rather than encryptiddisg for each simple hyper-
rectangle inP*(X) = P;(X) x ... x Pp(X), we would like to encrypMsg for each tree node in
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the the union of thes® different paths:
PY(X) =P (X)U... UPp(X).

Reducing the decryption key size. Instead of representing an arbitrary hyper-rectanglegusin
the collection of simple hyper-rectangles, we can repieaesimple hyper-rectanglB as the
collection of disjoint intervals over different dimensgn

Definition 7 (Hyper-rectangle as a collection of node#s) hyper-rectanglédB C L, gives a col-
lection of nodes corresponding to disjoint intervals ovifedent dimensions:

AY(B) = A{(B)UAy(B)U...UAp(B)

Note that for all hyper-rectangB C Lx, |AY(B)| = O(DlogT)); in addition,A”(B) can be
computed efficiently.

Using the above definition, rather than releasing keys fon eanple hyper-rectangle it (B) =
Ai1(B) x ... x Ap(B), we would like to release keys for ea€P in A;(B) U... U Ap(B).

Example. Figure 2 (a) is an example in two dimensions. To encrypt utitepoint(3, 5), we find

the path from the leaf node to the root in the first dimension, and the path from the leafeno
5 to the root in the second dimension. We then produce a blodkertiphertext corresponding
to each node on the two paths. In the first dimension, we peblacksc;, ¢,, c3 andey. In the
second dimension, we produce bloekscg, c; andcg. To release decryption keys for the range
2,6] x [3,7], we find a collection\(2, 6) of nodes covering the rand 6] in the first dimension;
and a collection\(3, 7) of nodes coveringg, 7] in the second dimension. We issue a block in the
decryption key corresponding to each node\if2,6) and inA(3,7). In the first dimension, we
create blockk;p, . kip,, andk;p.; and in the second dimension, we create bldcks,, k;p,,,
andeDF.

Preventing the collusion attack. Unfortunately, naively doing the above is equivalent tolgpp
ing the AIBE-based MRQEDscheme independently in each dimension. As we demonsirate i
Figure 2 (b), such a scheme is susceptible to the collusi@atlkat Suppose that Figure 2 (b),
every rectangle is a simple rectangle. Now suppose that eersaty were given the decryp-
tion keys for regioni; and Ry, then the adversary would have collected kkeys = {k.1, ky1},

krs = {ku2,ky2}. With these, the adversary would be able to reconstruct ¢ys kor R, and

R3: kpa = {ku2, ky1}, krs = {ks1, ky2}. Hence, our major challenge is to find a way to se-
cure against the collusion attack without incurring adahiél cost. We use hindingtechnique to
prevent the collusion attack: we use re-randomizationetaagether the sub-keys in different di-
mensions. For example, in Figure 2 (b), when we release ttrypkson key for regionk;, instead

of releasing{k,1, k,1 }, we releasg i, k.1, i, k,1 }, wherep, andj, are random numbers that we
pick each time we issue a decryption key. Likewise, whenasiegy the key for regiok,, we
release{ji, k.2, /i, k,2 }, wherep’, andy;, are two random numbers picked independently fiom
andj.,. Of course, in the real construction, andyz, ( i, andz,) also need to satisfy certain
algebraic properties (e.gi./1, = fi,/i;, = SOme invariant) to preserve the internal consistency of
our scheme. In this way, components in the decryption keykfocannot be used in combination
with components in the decryption key fay,.
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5.2 The Main Construction

We are now ready to describe our construction. Define O(log T') to represent the height of a
tree. Assume that nodeDs are picked fronZ;. We append a messa@dsg € {0, 1} with a

series of trailing zero€)™, prior to encryption. Assume th&6, 1} C G/,
Setup(X, La) To generate public parameters and the master private leegetiap algorithm first

generates a bilinear instan€e = [p, G, G/, g, €] & GenY). Then, the setup algorithm does the
following.

1. Select at random the following parameters fijfy+':

W, [Oécp,l’ago,%ﬁgo,hﬁ«p,%9(,0,17090,27 ;,1,9;72] o=(d,l)
€[D]x[L]
In addition, we require that the's and thes’s be forcibly non-zero. At this point, we give a
brief explanation of our notation. The varialgtdés used to index a tuplel, () € [D] x [L],
whered denotes the dimension ahdenote the depth of a node in the corresponding tree.

2. PublishG and the following public parameteBK c G’ x G8P~:

Q e(ga g)wy

(g1 goerlon agyg « gheler,
/ 016! / Q20!

Cl%l <—% ‘Pe @b, Q%Q <—g “’é ©.2,

bcp,l — g ©,1 sa,17 b%g — g ©,2 «,c>,27

Uy = g%, b, = gPe2%2, [omane
DIx]L]

3. Retain a master private k&K < G3*PL*! comprising the following elements:

~ w
w—4g,

« «@
agp,l — g %17 ago,? — dg %27
bgp,l — gﬁ%la bcp,? — 9/8%2’

« 0 « 7]
Yp1 < g #:1Pp1 %17 Yp2 < g ©:200,1 ¢’27

/ (67 ,1ﬁ 719/ / (67 ’25 719/
ycp,l —49g o %17 ycp,Z — 49 P20 2 G‘P[;](iv[ll)l]

Notice that in the public parameters and the master key, we Hdferent versions of the
same variable, e.ga,, 1, a,2, a;, ;, a,,. Although they seem to be redundant, they are ac-
tually need to provide sufficient degrees of randomness diompooof to go through. The
reasons for having these different versions will becomarad@ce the reader has gone over
the detailed proof provided in Appendix C.

DeriveKey(PK, SK, B) The following steps compute the decryption key for hypetargle
B, given public keyPK and master private keyK.
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1. PickO(D - L) random integers fror@? x z2* ®:

[/jd] de[D]’ [/\ID,lu )\]D,Q][DEAU (B)

such that[ [ ., ta = w. The reason for having an overhead tilde for the varighlés

to associate it with the variable, since they both belong to the groh and they satisfy
the condition thaﬂdE[D] g = w. We note that the randomy,’s generated in this stage are
later used to re-randomize the components of the decrygggnIn this way, components
in different dimensions are tied to each other; and comptsngam one decryption key
cannot be used in combination with components from anoteerygtion key. This is how
we prevent the collusion attack as shown in Figure 2 (b).

2. Compute and release a decryption BK < G°*"(B)l. DK is composed of a portion
DK(ID) for eachID € A”(B). In the following definition forDK(/D), ¢ = (d,l) =
®(ID) represents the dimension and depth of néfle without risk of ambiguity, denote
A = /\]D71, Ay = )\ID,Q- DK(ID) is defined below:

~ (ID.1 \M[ ID./ \A2 D P PR VO W
fa(yihvoa) " (WiByh2) ™ agats bot's s’ b

Observe that we release a portion of the decryption key fchn eade inA“(5), as opposed
to for each hyper-rectangle iv*(B). In this way, the size of the private key ($(DL),
instead ofO(L”). Also observe that we multiply the first elementldK (1 D) by fi4. This
illustrates theébindingtechnique used to tie together components in different dgioss. In
this way, components in one decryption key cannot be useahbmation with components
in another decryption key; therefore, we successfully @néthe collusion attack.

Encrypt(PK, X, Msg) We create a block in the ciphertext for evdiy € P(X). Equivalently,
for each dimensiol and depth, denotep = (d,1), we create a portion of the ciphertext corre-
sponding to the nod€,, residing in thel*" tree at deptli, on the pattP,;(X) to the root. We now
describe th&ncrypt algorithm in the following steps:

1. SeleckDL + 1 random integers: selecte; Z,, selectr, ;, ’f’%g]w (

2DL
=(d,l)e[D]x[L] Cr Zp :

2. Forp = (d,1) € [D] x [L], defineZ, = Z,,(X), i.e., the node at depthin P;(X) in thed""
dimension. Now compute and output the following cipher@xt G’ x G*PL+1:

(Msgl|0™) - Q7. ¢,
(bso,lzwbio,ﬁrw? (a@,l%afp,l)rirwa

SN Tp,2 T 1 T—="p,2
(b%z <Pb<p,2) ) (a%Q S0a<,0,2) p=(d,l)e
[D]x[L]

QueryDecrypt(PK, DK, C) We first give an overview on ho®ueryDecrypt works. Recall
that a decryption keyDK = {DK(ID) | ID € A”(B)} is composed of a portioDK (/D)
for each/D € A“(B). We now reconstruct a decryption key for each simple hypetangle
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idg, € A*(B) as below. We grab fronlDK a sub-key from each dimension: for eatke [D],
grab a sub-kePDK (7 D,) from thed™ dimension, wheré D,; € A;(B). The collection of sub-keys
{DK(I/D,),DK(ID,),...,DK(IDp)} can now be jointly used to decrypt a message encrypted
under the simple hyper-rectandtys, = (ID;,...,1Dp).

We also need to find the correct blocks in the ciphertext tdyafps key foridg,. Recall
that the ciphertext is of the for@ = (c, €0, [Cp,1, Cp25 Cp 3, %A]@:(d,z)e[p}xm)- For convenience,
denotec, := [cy1,Cp2,Cp 3, Cpa) TOr ¢ = (d,1) € [D] x [L]. ¢, is the block in the ciphertext
corresponding to a node in tk" dimension and at depthof the tree. Definé (1 D) := (d,[) to
extract the dimension and depth of the ndde Now for a sub-keyDK (1 D), definep = ®(1D),
itis not hard to see thaK (/D) should be used in combination with the blackin the ciphertext.

The following algorithm iterates through the simple hypectangles im\*(B) and checks if
the ciphertext can decrypt to a valid message under eacheshyper-rectangle in*(B).

For each simple hyper-rectang\é (By) = {(/D1,ID,,...,I1Dp)} C A*(B),

(1) LetDK(/Dy) = (kip, 0, kip, 1, kip, 2, kip, 3, kip, 4) represent the elementIdK for 7 D,,
whered € [D].

(2) Try to decryptC underB, with the collection{DK(/D;), DK(ID,),...,DK(IDp)} of
sub-keys:

Vie—c: H {G(CO, krpao) - e(%d,l, Krpg1) - e(Cw,Q, krpg2) - e(Cgod,?), krpg3) - e(cgod,4a Krpga)

de[D],
0a=P(IDq)

If V' is of the forml\//[s\g||0m', then outpuil\//Is\g as the decrypted plaintext and exit.

If for all simple hyper-rectangles in*(B), the previous step fails to produce the plaintext, then
output L.

When done naively, the abo¥@ueryDecrypt algorithm takesO(D(log T')P) time. How-
ever, if one saves intermediate results, it can be dotk jtog 7)) time with O(D log T') storage.
The above numbers takes into account all group operatiociside multiplication, exponentiation
and bilinear pairing. However, since a pairing operatiagpscally more expensive than exponen-
tiation (and far more expensive than multiplication) in wmobilinear groups, we are particularly
interested in reducing the number of pairings at time of yl@oon. Notice that we can precom-
pute all pairingse(co, krp,,0) and pairingse(c,, ;, kip,:) for 1 < i < 4, and store the results in a
look-up table. Therefore, the decryption algorithm regs® (D log T') pairings in total.

6 Consistency, Security

The following two theorems state the consistency and sigonfrour MRQED construction.

Theorem 6.1(Internal consistency)The above defined MRQED construction satisfies the consis-
tency requirement posed by Equation (1).
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Theorem 6.2 (Selective security) The above defined MRQED construction is selectively secure
against polynomial-time adversaries.

Below we give an overview of the techniques used in the sgcprdof. The detailed proofs
of Theorem 6.1 and Theorem 6.2 are provided in Appendix C gmpkeAdix B respectively. To
prove the selective security of our MRQEZonstruction, we decompose the selective MRQED
game into two games: a selective confidentiality game ande&tse anonymity game. By the
hybrid argument, if no polynomial-time adversary has mbentnegligible advantage in either the
confidentiality game or the anonymity game, then no poly@biiine adversary has more than
negligible advantage in the combined selective MRQED game.

In the proof, we build a simulator that leverages an MRQED eshrg to solve the D-BDH
problem or the D-Linear problem. The simulator inheritsgmaeters specified by the D-BDH/D-
Linear instance, hence, it has incomplete information almmaster key. Therefore, the crux of
the proof is how to simulate the key derivation algorithmhaiit knowing the complete master key.
In comparison, the anonymity proof is more complicated ttienconfidentiality proof, because
it involves a hybrid argument containi) L steps. In stegd,, [;,n,) of the hybrid argument,
Yor,my ANAY,, . (01 = (di, 1)) in the master key contain unknown parameters inherited threm
D-Linear instance. Therefore, we need to condition on tlhegtive position betweeiX* and the
(dy,1;) in question. Our proof techniques are similar to that preeseim the AHIBE paper [15].

7 Practical Performance

In this section, we give a detailed analysis of the perforreanf the MRQED’ scheme given in
Section 5 in practical scenarios. We use the conditionabsa of encrypted network audit logs as
our motivating application.

Assumptions. To evaluate the scheme of Section 5 in this application, weildeset of scenarios

regarding the searchable fields present in the logs. We a&siegnentries contain the fields listed in
Table 2. The 17-bit time field is sufficient to distinguish &#sover a period of about 15 years with
a one hour resolution, or about three months at a one minstduteon. More precise times may
be stored in the non-searchable portion of the messageiredesThe protocol field corresponds

Field || Abbr. | Range Distinct Values
Source IP || sip 0, Typ —1] | Typ = 2%
Dest. IP || dip | [0, Ty —1] | Typ = 2%
Port || port | [0, Thorr —1] | Tporr = 216
Time || time | [0, Tiime —1] | Ttime = 2%7
Protocol || prot | [0, Tpot —1] | Tpror = 28

Table 2: Fields appearing in a network audit log and their possible values.

to the actual bits of the corresponding field in an IP headé&e(e, for example, 6 denotes TCP
and 133 denotes Fibre Channel). Various subsets of these fiedgt be included as searchable
attributes in MRQED'. Other fields and any additional associated data such as@apayay be
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included as the encrypted message. Regardless of messgtie \ea need only use the MRQED
scheme to encrypt a single group element, which may be a malgdgenerated symmetric key
(e.g., for AES) used to encrypt the message.

Benchmarks for the selected pairing were run on a modern vaiits. The processor was a
64-bit, 3.2 Ghz Pentium 4. We used the Pairing-Based CryppbgréPBC) library [34], which
is in turn based on the GNU Multiple Precision Arithmetic taby (GMP). The relevant results
are given in Table 3. Using these benchmark numbers, we ntimade the performance of our
encryption scheme under several scenarios for the netwtik lag application.

Operation| Time
pairing (no preprocessing) 5.5 ms
pairing (after preprocessing)2.6 ms
preprocess pairing 5.9 ms
exponentiation irz, G | 6.4ms
exponentiation irG’ | 0.6 ms
multiplication inG’ | 5.1 us

Table 3: Group arithmetic and pairing performance benchmarks on a modern wiookg@4].

Public parameters and master key.The space required to store the public parameters and master
key is logarithmic with respect to the number of possiblalaite values. Specifically, denote the
set of attributes ad = {sip, dip, port, time, prot}. Then for each attribute € A, define the height
of the treeL, = log, T, + 1. For exampleLs, = 33 and L, = 9. Then the public parameters
PK require a total o8 _, L, = 880 elements ofG and one element d&’. Assuming 512-
bit representatiortsof elements ofG andG/, the total size oPK is 55KB. The master kegK
contains the same number of elements, again requiring 55Kd&ooage. More space efficient
pairings than the one used in this estimate are availabtethizione was selected for speed of
evaluation.

Computation time foSetup is reasonable, given that it is only run once. Computing theipu
and private parameters Betup requires roughlyi6 ) _, L, exponentiations and one pairing,
for a total of about 11.3s. Time spent on multiplication irstbase is negligible.

Encryption. Saving the group elements of a ciphertext requirgs,_, L, + 2 group elements,

or 28KB. Note that we normally just encrypt a session key, soitha constant overhead beyond
the actual length of the message. Runrifigcrypt requires about two exponentiations for each
group element, resulting in a time of about 5.6s. While sigaiit, this overhead should be accept-
able in most cases in the network audit log example. If aodi bre high volume, the best strategy
may be to produce periodic summaries rather than sepaeatetypting each packet. The search-
able attributes of such summaries would reflect the coblaati entries they represent, and the full
contents of the entries could be included as the encryptexsage without incurring additional

overhead. In systems containing a cryptographic accelecaip supporting ECC (such as some

2\We consider a type A pairing using the singular cug¥e= 23 + « for the groupsc andG with a base field size
of 512-bits. Note that all groups involved have 160-bit grawder; the storage requirements arise from the specific
representation of elements in the elliptic curves.
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routers), much higher performance is possible. For exantipdeElliptic Semiconductor CLP-17
could reduce the time of exponentiation from 6.4ms te3{19], resulting in a total encryption
time as low as 27ms.

Key derivation and decryption. We now consider decryption keys and the running time of the
decryption algorithm, the more interesting aspects of tinee’s computational and storage re-
quirements. The space required to store a decryption ketirtie to derive it, and the time to
decrypt using it depend only on the ranges of attributes fackvit permits decryption. Unlike the
computational and storage requirements discussed thubése costs do not depend on the full
range of possible values, only those associated with theTkegse costs depend on the number of
key components necessary to represent the permissible edmigg each dimension. For example,
suppose a particular decryption kBYK only allows decryption of entries with a destination port
in the rang€3, 7] (perhaps placing other requirements on the other attshuteferring back to
Figure 1, we see that three tree nodes are necessary to baeartige, sderiveKey would
include these three for the destination port dimensioDId. Similarly, given some decryption
key DK, we denote the number of tree nodes necessary to cover thgten range in each of
the dimensions € A by N, = |A,(B)| (using the notation of Section 5). So in this example,
Noort = 3. Note that for any: € A, in the worst casey, = 2L, — 2.

Now given N, for eacha € A, we may compute the decryption costs. A decryption key
consists of5 ) _, N, group elements aniDeriveKey performs8_ _, N, exponentiations.
The number of operations necessary to decrypt using dXeyis slightly more subtle. While
QueryDecrypt is O([[,. 4 La) (i.e.,©((log T)”)) overall, onlyO(>" ., L.) (i.e.,O(Dlog T'))
pairings are required, as mentioned in Section 5.2. Spaltyfieve need only compute) ., N,
pairings to populate a lookup table containing values(of, k;p,), €(cy1,kip1), €(cp2, kip2),
e(cy3,kips) e(cpa,kipa), ande(c, 5, kip ). These values are enough to complete@heryDecrypt
algorithm. Assuming a key will normally be used to decryptatch of ciphertexts one after an-
other, we may further reduce the cost of pairings by pre@siog with the key. As shown in Ta-
ble 3, preprocessing reduces the pairing time by about &izdf one time cost (per decryption key
DK) equivalent to one or two decryptions. Computed naivelystiguence of trials in step one of
QueryDecrypt end up requiring a total dfA| [ [, , N, multiplications inG’. This can be some-
what reduced. Leb,... 5S4 be{N,|a € A} sorted in ascending ordef; < S, < ... 54
Then by saving intermediate results between trials andrimgléhe dimensions appropriately, it is
possible to complete step one with a totabf- 5,5, +.51.92595+. .. 5155 - - - S|4 multiplications.

Specific scenarios.We have now computed the costs associated with the storagesage of a
decryption key in terms oW, for a € A, but we have not yet specified,. If we assume the range
for each attribute is randomly selected (uniformly), thendach: € A, the expected value df,

is L, — 1. This results in a decryption key size of 33KB and a runningetifor DeriveKey of
5.4s. The corresponding worst-case decryption tilme 3.1s. We note that this is a major cost,
and likely to be inconvenient if significant quantities oflentries must be decrypted. Fortunately,
gueries eliciting such long decryption times are not likelype necessary in practice. In fact, fairly

3In reality, the average decryption time is smaller than thisnber, since upon a successful decryption, the
QueryDecrypt algorithm exits after trying half of the combinations in expation and thus performing half the
worst-case multiplications.
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Pairing | Worst-case|| Worst-case
Example Query Nsip | Naip | Nport | Ntime | Nprot Time | Mult. Time || Dec. Time
sip=207.44.178.%,

dip=216.187.103.169, port=22,

time=x%, prot=TCP
sip€[207.44.178.123,207.44.182.247],
dip=x, port=22,
time € [5pm 10/31, 9am 11]5
prot€ {TCP, UDP, ICMP
sip€[207.44.178.123,207.60.177.15],
dip€]207.44.178.123,207.60.177.15],
port € [3024, 35792],
time €[10/31/2006, 10/31/2020
prote {TCP, UDP, ICMRB

1 1 1 1 1 65ms < 0.1ms 65ms

10 1 1 7 3 286ms 1.2ms 287ms

20 20 15 17 3 0.98s 1.64s 2.62s

Table 4:Decryption times resulting from decryption keys of various sizes.

elaborate queries are possible while keeping decryptistsdow.

In Table 4 we provide several examples that help demongtriateThe first entry illustrates the
fact that specifying a single value, all values, or a rangeatifes falling on power-of-two bound-
aries (as in the case of an IP subnet) for some attribuigssults inN, = 1, reducing decryption
time dramatically. In the next example, several attribatesrequired to be in general ranges, or,
in the case ofrot, selected from a small set. This results in larger numbekeyptomponents and
slightly longer decryption times. Still, the decryptiome in this case is far below the time with
each range randomly selected. As shown by the third examapder ranges result in larger values
of N, and, again, somewhat larger, but still relatively low, ggtion times.

8 Extensions and Discussions

8.1 The Dual Problem and Stock Trading through a Broker

In the MRQED problem, one encrypts a messadeg under a pointX in multi-dimensional
space, and given a hyper-rectanflethe master key owner can construct a capability, allowing
an auditor to decrypt all entries satisfyidy< B. On the other hand, the privacy of the irrelevant
entries are still preserved.

Informally, the natural dual problem to MRQED is where onergpts under a hyper-rectangle
B, and given a poinKX, the master key owner can construct a capability allowinguadghitor to
decrypt all entries satisfyinB > X. Like in MRQED, we require that the privacy of all irrelevant
entries be preserved. We now show an interesting applicafithe dual problem, and then show
that MRQED implies a solution for the dual problem.

An interesting application of the dual problem is for tragistocks and other securities. Sup-
pose annvestortrades stocks throughlaoker. The investor specifies a price range and a time
range, such that if the stock price falls within that rangerdpa specific period of time, the broker
can buy or sell the stock on behalf of the investor. This isaligueferred to as atop order limit
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order, or stop-limit order Sometimes, the investor may not fully trust the broker, mwag wish to
conceal the price and time ranges from the broker beforedar & executed.

The dual problem can be applied in such scenarios to addiregsivacy concerns of investors.
In particular, thestock exchanger any third-party with knowledge of the real-time stoclcprcan
act as the trusted authority who owns the master key. Foreto@rce, in the following description,
we assume that thetock exchanges the trusted authority. The investor first encrypts thesord
along with the desired price and time ranges, and sends tngpead order to the broker. Suppose
that at a certain point of timg the stock price i®. The stock exchange constructs a decryption
key for the pair(t, p), and hands it to the broker. With this decryption key, thekbraan decrypt
all orders whose price and time ranges match the currerdg paad the current timg and execute
these orders. For orders whose price and time ranges do o tha current price and time, the
broker cannot learn any additional information about tresers.

MRQED implies the dual problem. We use a two-dimensional example to illustrate how MRQED
implies a solution for the dual problem.

e Dual.Setup (%, [T]?): Call MRQED.Setup (X, [T]*), and output the public kelK, and
master ke\SK.

e Dual.Encrypt (PK, [z, 22| X [y1, 2], Msg): To encrypt a messagddsg under the range
(1, x2] X [y1,y2] INn 2 dimensions, caMRQED.Encrypt (PK, (x4, z2, y1, y2), Msg). Ob-
serve that here a rande, z»] x [y1, y2] in [T]? is mapped to a poirltr, z2, y1, y2) in [T]*.

e Dual.DeriveKey (PK, SK, (z,y)): To generate a decryption key for the poiat y) €
[T1?, call MRQED.DeriveKey (PK, SK, [1,z] x [z, T] x [1,y] x [y, T]).

e Dual.QueryDecrypt (PK, DK, C): To try to decrypt a ciphertext using the decryption
key DK, call MRQED.QueryDecrypt (PK, DK, C).

In essence, the above construction maps a range,| x[y:, 2| C [T]*to apoint(zy, x2, y1, y2) €
[T]%, and testing if a pointz, i) is within the rangéx, , 2] x [y1, 2] is equivalent to testing whether
(21, 22,91,y2) € [1,2] x [x,T] x [1,y] x [y, T]. Itis easy to verify that the security of the MRQED
scheme guarantees a similar notion of security for the duadtcuction, i.e., if a decryption key
fails to decrypt a certain ciphertext entry, then a prolsticlipolynomial adversary cannot learn
any additional information about that entry.

8.2 Adaptive Security

Our scheme is provably secure in the selective-ID modelréngeer notion of security is adaptive-
ID security (also known alill security), i.e., the adversary does not have to commit abEthahe
which point in the lattice to attack. We present the formdirdigon for MRQED adaptive-1D
security in Appendix D . Previous research has shown that iBiemes secure in the selective-
ID sense can be converted to schemes fully secure [6, 18,64%ith some loss in security. In
particular, Boneh and Boyen prove the following theorem:
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Theorem 8.1([6]). A (t, q, €)-selective identity secure IBE systeiND-sID-CPA) that admitsV
distinct identities is also &, ¢, Ne¢)-fully secure IBE (ND-ID-CPA).

This technique can be applied to our case to achieve full denfiality and anonymity. In our
case, the scheme admits= T'” identities and hence that would be the loss factor in sgcurit

9 Conclusion

We design an encryption scheme that allows us to encryptlatraay message and a set of at-
tributes. An authority holding a master key can issue a seeapability to an authorized party,
allowing it to decrypt data entries whose attributes falihivi specific ranges; while the privacy
of other data entries is preserved. We prove the securityio$scheme under the D-BDH and the
D-Linear assumptions in certain bilinear groups. We alsdysthe practical performance of our
construction in network audit log applications. Apart freretwork audit logs, MRQED can be
useful in various other applications such as financial dod#, untrusted email servers and med-
ical privacy. In particular, we show that the dual problem ba useful for investors who wish to
trade stocks through a broker in a privacy-preserving manne
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A Notations

In Table 5, we summarize the notations used throughout #psip

Notation | Explanation | First Defined
[s,1] integerss throught Sec. 3
[a] integersl througha Sec. 3
D number of dimensions Sec. 3
T number of discrete values in each dimension Sec.3
La multi-dimensional lattice Sec. 3
X a point in the lattice Sec.3
B a hyper-rectangle Sec. 3
by security parameter Sec. 3
PK public key Sec. 3
SK master key Sec. 3
DK decryption key Sec. 3
Msg message to encrypt Sec. 3
M message space Sec. 3
G a bilinear instance Sec. 3.3
G bilinear group Sec. 3.3
G’ target group Sec. 3.3
e bilinear pairing function Sec. 3.3
g generator of Sec. 3.3
Zy, additive group of integers modular a prime Sec. 3.3
Ly multiplicative group of integers modular a primpe Sec. 5.2
tr(7T) binary interval tree over integetsthroughT Sec. 4.2
1D identity of a tree node Sec. 4.2
cv(ID) range represented by a tree ndde Sec. 4.2
P(x) path from the root to the leaf node representing Sec. 4.2
A(s,t) set of nodes representing the range [s, t] Sec. 4.2
Ay(B) set of nodes representing the range specifieB iy the ¢/ dimension Sec. 4.3
By simple hyper-rectangle Sec. 4.3
idg, identity vector of the simple hyper-rectands Sec. 4.3
A*(B) hyper-rectangl® as a collection of simple hyper-rectangles Sec. 4.3
Py (X) path to root in thel*" dimension for the poinK Sec. 4.3
P*(X) cross-product of alD paths to root for the poinX Sec. 4.3
PY(X) union of all D paths to root for the poinX Sec.5.1
AY(B) hyper-rectangl@ as a set of tree nodes Sec.5.1
L height of interval tree Sec.5.2
®(ID) a function that outputs the dimension and depth of some ridtle Sec.5.2
v =(d,l) usually used in subscripts to indicate the dimension anthdegpectively| Sec. 5.2
5.2

Z,(X) wherep = (d,1)

the node at depthin the pathP,(X) of thed'" dimension

Sec.

Table 5:Notations.
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B Proof of Consistency

Proof of Theorem 6.1:
LetC = (¢, co,[cpi,Cp2sCps, 0%4]%:(%[)6[1)“[”) be the encryption oMsg on pointX. Let

A*(By) = {(IDy,ID,,...,1Dp)} € A*(B) be the current simple hyper-rectangle under de-

cryption. Letp, = ®(1Dy) (d € [D)).
If X € By, thenforalld € [D], Z,,(X) = ID,. For simplicity, let{(z) = e(g, g)*, and denote

7,, = Z,,(X). Now decryption forB, proceeds as follows:

IDg, /1 ))\IDd,2)

, - - A
V =(Msg[[0™) - ] e (graud(y@dJIDdy:od,l) B (TP T
de[D]
H e a¢dvn_AIDd7n’ (b(pd’nl—@d bipd’n)npd’n) ’ € (bwd’n_)\Ide’ (aﬂodm’zwd a:&dvn)r_npd’n)
de[D],ne(2] de[D],ne(2]

:(MSgHOmI) Q" e(g"w0)-E |- Z O‘@d,nﬁtpd,n)‘fden (9¢d7nIDd =+ Gclpd,n)

de[D],
ne(2)

&3 Z a@d,”(_)‘fde)r@d,n@Pd,n (9@d7nIs0d + Q:Dd,n)

de[D],
ne(2]

: § Z IBQOdan(_)\Ide'VZ) (r - Teodﬂl) Qpgn (0<Pd7nI(Pd + H:Odm,)

de[D],
nel2]

=(Msg||0™)- Q" -e(g",D)- & | r- Z VpgnBoanAiDgn (OpynIDg + 9:%71)

de[D],
nel2]

§ - Z a@danﬂ@dan(_)\Ide/) (de,nIWd + eiod,n)

de[D],
nel2]

—Msg]|0™".
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Else ifX ¢ By, Z,,,(X) # 1Dy, d € [D]. Hence decryption yields

Elr- Z a%nﬁwom)‘f[)d,n (Q‘PdvnIDd + H:Od,n)

‘el
m/ ne(2
V = (Msg||0™)
5 r- Z a@dynﬁﬂodyn)\IDd,n (Q<Pd7n:z-§0d + %d,n)
de[D],
nel2]
= (Msgl[0™) - Q"

where

Q=< Z awd,n@pd,n)‘IDd,n (esod,n[Dd + eclpd,n) - Z O‘sﬁdmﬁw,n)‘fDd,ﬂ (9%17"1-%1 + e;d,n)

de[D], de[D],

ne(2] nel2]
With probability 1 — 1/p, @ # 1, and the ciphertext is distributed uniformly at randomGh
Hence the probability thdt is of the formMsg||0™ is less thart + 5.

C Proof of Security

To prove the selective security of our MRQERonstruction, we decompose the selective MRQED
game into two games: a selective confidentiality game ande&tse anonymity game. By the
hybrid argument, if no polynomial-time adversary has mbentnegligible advantage in either the
confidentiality game or the anonymity game, then no polybiiine adversary has more than
negligible advantage in the combined selective MRQED gantee t€rminologyconfidentiality
andanonymitythat we use here is adopted from AIBE schemes.

Definition 8 (MRQED selective confidentiality gamejhe MRQED selective confidentiality game
is defined as below.

e Init: The adversaryd outputs a poinX* where it wishes to be challenged.

e Setup The challenger runs tHgetup (X, LA ) algorithm to generatPK, SK. It givesPK
to the adversary, but does not divulgk.

e Phase 1 The adversary is allowed to issue decryption key queriebyper-rectangles that
do not containXx*.

e Challenge The adversary submits two equal length messadeg, andMsg,. The chal-
lenger flips a random coim, and encrypt?Msg, underX*. The ciphertext is passed to the
adversary.
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e Phase 2 Phase 1 is repeated.

e Guess The adversary outputs a guessf b.

Definition 9 (MRQED selective anonymity gameJhe MRQED selective anonymity game is de-
fined as below.

e Init: The adversaryd outputs two pointX, andX;, where it wishes to be challenged.

e Setup The challenger runs tigetup (3, LA ) algorithm to generatPK, SK. It givesPK
to the adversary, but does not divulgk.

e Phase 1 The adversary is allowed to issue decryption key queriebyper-rectangles that
do not containX, andX;.

e Challenge The adversary submits a messadsg. The challenger first flips a random coin
b, and then encrypt®Isg underX,. The ciphertext is passed to the adversary.

e Phase 2 Phase 1 is repeated.

e Guess The adversary outputs a guéssf b.

In either game, we define the adversatg advantage as

1

Advu(S) = [Pr[b =] — —'

2

Definition 10 (IND-sID-CPA). An MRQED scheme is IND-sID-CPA secure if all polynomial-time
adversaries have at most a negligible advantage in the centiality game.

Definition 11 (ANON-sID-CPA). An MRQED scheme is ANON-sID-CPA secure if all polynomial-
time adversaries have at most a negligible advantage in tieagmity game.

Lemma C.1. If an MRQED scheme is both IND-sID-CPA secure and ANON-sID-CR&esgthen
the MRQED scheme is selectively secure.

Proof. By the hybrid argument. |

Hence, it suffices to prove our MRQED construction IND-sID-Cétfd ANON-sID-CPA se-
cure. We say that an MRQED schemdisg, €) secure if any adversary makiggange queries
for decryption keys, cannot have more thaadvantage within time.

Theorem C.2(Confidentiality) Supposé satisfies thér, ¢) D-BDH assumption, then the above
defined MRQED scheme(ig’, ¢, ¢) IND-sID-CPA secure, wheré < 7 — ©(¢DlogT).

Theorem C.3(Anonymity). SupposéG satisfies theér, ) D-Linear assumption, then the above
defined MRQED scheme (8, ¢,¢’) ANON-sID-CPA secure, wheré < 7 — ©(¢DlogT'), and
¢ =(2DlogT + 1)(e+ 1/p).
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In particular,©(¢D log T') comes from the fact that the simulator ne€dd log T") time to
compute the decryption key for each hyper-rectangle gderide2D logT + 1 loss factor in¢/
comes from the hybrid argument we use to prove anonymity,aalditive 1 /p comes from the
probability that bad events happen in the simulation sottf@simulator has to abort.

[

C.1 Proof: Confidentiality

Proof of Theorem C.2:

We reduce the semantic security of MRQED to the hardness oDtB®H problem. Let
l9, 01, g2, 93, Z] denote the D-BDH instance supplied to the simuldBomhereg; = ¢**, go = g*2,
g3 = ¢**, the simulator’s task is to decide whether or tbt= e(g, g)****>*. And to do this, the
simulator leverages an MRQED IND-sID-CPA adversaty,

We describe a reduction such thaki= e(g, g)*'#*>*, the simulator produces a valid ciphertext;
otherwise, the first term in the ciphertext is random. Hence, if the adversary couihkrthe
confidentiality of the scheme, the simulator would be ablgdige the D-BDH problem.

Init: The adversary selects a poMt € LL, that it wishes to attack. Fay € [D] x [L], define
T; = I,(X).
Setup: To create public and private parameters, the simulator thee®llowing:

1. Pick at random fron,,'*"*:

(s Bons O 0 s O O,

P10 @,n’ ©,1 90»'”] p:(d,l)G[D}X[L},nGD]

subject to the constraint that

0T+ 0, =0]

p=(d,l)e[D]x[L],n€[2]
whereZ; = 7,(X*). We also require that the’s, 3’s, 0's and@'’s are forcibly non-zero.

2. Release the following public parameters to the adversary.

a(pﬂq, «— (ga%ngle_%n);‘%n7 a:D’n — <ga;7nglezp’n)ﬁoﬂp,n
bipvn — <99¢,n919%n) %"7 b:o,n — (g%’"gl%’n) %n’

0~ e(91792)7 [ ’ ]
e=(d,l)€[D]x[L],n€[2]

Note that this posits that = z;z; in addition, bothw andw are both unknown to the
simulator.

3. Compute what it can of the master key.
Adpn ga%na bgo,n — gﬁ%na
n (03 ,nﬁ m / n' « ,nﬂ \n
Yom — (glomgaPon) 77"y, (glomgyPem) T

p=(d,l)e[D]x[L],ne[2]

Portionw of the master key is unknown to the simulator.
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Phase 1:Suppose the adversary makes a decryption key query for ger-mgctangld sy, t1, s, to, .
SinceB does not contaiX*, there exists a dimensiofy € [D] such thatv) ¢ [sq,,tq,], Where
x}, is X* projected onto thé” dimension. Hence, there exists a dimensipre [D], such that
forall ID € Ay, (B), ID # I, wherep = (dy,l) = ®(ID). We say thatX* does not overlap
with B in dimensiond,. The simulator now does the following:

1. Pickd, such thatX* does not overlap witliB in dimensiond,. Letny = 1.

2. Pick the following numbers at random frdﬁﬁ)“‘AU(B)':

['ud]de[D]’ [XIDaRO]IDeAdO(B)7 [)\IDvn]IDeAdO(B),nyéno’ [)\IDJJ]DGAU(B)—AdO(B),ne[Q}

subject to the constraint thgtjde[D] g = 0.

3. ForallID € AY(B)— Ay, (B), let DK(ID) = (k,D,O, [k%’l, kgt;;,l} , [k(]% kf,b[),QD repre-
sent the element iDK for I D, lety = (d,1) = ®(ID) whered # dy, compute and release
DK(ID) as below:

AID,n
kID,O — g'ud ' 1_[[] (yga,nIDy:p,n) w )
ne|2

k(a)

b
IDn k( )

— a%n—)\ID,n’ D & b(p’n—AID,n]

nel2]
4. ForallID € Ay, (B), letyy = (dy,l) = ®(ID), compute and relead@K (/D) as below:

~ A
kipo < wgho - [] (yLPOJLIDy:pO,n) e

ne(2]
kg‘%n =gy NP, kg%n - bsoo,n_AID’n}
’ ’ ne(2]
where B .
)\ID,n - )\ID,n - 2 = (2)
’ ’ 4;007”05900’77»0 @9007”0
@9007710 - QWOanOI‘D + etlpo,'no % O
This ensures that; » ,,, is distributed uniformly at random if,,. And Sincef,., , 25, + 0., .y =

0; moreover, the simulator has pickégl such that/ D # I7 , we then haved,, ,, # 0.
Although the simulator does not knop, ,, (since it does not know), it can compute
3y me 1Pmo andby, ,, "m0 given g*2. Since the simulator does not knaw we now
explain how to computk;, o. The simulator rewrites the equation far, ; as

N T ID 1 Atp2|  ~ ID 1 AID1
km,o—[g O (Yo Yoy 2) ] & (Yoo i)

Let U = gHdo - (yw’QIDy:OO’z)/\IDQ, thenk;po =V & - (y%nomy;o,no)km‘"o The simulator

can compute par because it possesses all necessary parameters requimedpate it.
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Although the simulator cannot directly compute the value of ,,, (since it does not know
27), it is capable of computing;p given g* andg*; since if we rewritek; o as below,
we can see that the exponent only containgand z; to the first degree. For convenience,
we omit the subscriptgy, no andID below by lettingoe = a0y B = Booines @ = Oppnos

fov/ :~94/P0,n0’ 0 = 6@0%0’ 0 = (94/,00,“0’ Y = Ypo,nor y/ = y;om, O = @9007”0’ A = /\IDJLO’
A= AIDng-

212 A 212 « 210 aB(0' L2108 X_ZQ/(aﬂ@)
kipo =V - g% (y'Py)" =0 . g7 (g BO+210)ID B0+ 19))

— . g 9—21z2<9’~1D+é’)/6 . gf(Z1,z2,a,ﬁ,e,e',é,é',X,@,ID) — . gf(Z1,z2,a,ﬁ,e,e',é,é',X,@,ID)

wheref(z, 22, a, 3,0,0',0,0',X,0,ID) is a polynomial where variables and z, have
maximum degree 1.

Challenge: The adversary gives the simulator two messayksg, and Msg,. The simulator
picks a random bit, and encryptdMsg, under pointX* as below:

1. Pick random integer$,, n] . e pixmmei € Zn -

2. Compute and release the following as the ciphertext.

Mse, ||0™' 7 ’[ r%nﬁ%n(Q%nI;JrGfpm)’ O (O nTEH0) )
( gb|| ) 93, 19 (g3 g ) p=(d,l)€[D]x[L],n€[2]

Note that this implies that = z3; and if Z = e(g, g)*****, it is easy to verify that the ciphertext

- = * 7/ _ -

is well-formed, due to the fact th@WIw +0pn = O] o—(apelix e ON the other hand, if

Z is a random number, then the first ternin the ciphertext is random and independent of the
remaining terms.

Phase 2:Phase 1 is repeated.

Guess: When the adversary outputs a guéssf b, the simulator outputs if & = b and0 other-
wise, in answer to the D-BDH instance. [ |

C.2 Proof: Anonymity

In Definition 9 of the selective-ID anonymity game, the cbafier flips a random coihin the
Challengephase. An equivalent definition is where the challenger flygscoinb in the Setup
phase before running thi&etup (X, LA ) algorithm. This new definition can be further translated
into a real-or-random version which we will use in the follogyproof of anonymity. In the real-or-
random game, the adversary commits to only one p&inin theInit phase; any of its subsequent
range queries must not contaXr; in the Challengephase, the challenger either returns a faithful
encryption ofMsg underX* or a completely random ciphertext; and the adversary’s ot i
distinguish between these two worlds. It is easy to verifit the above real-or-random definition
implies the selective-ID anonymity definition as stated &fiDition 9 [15].
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The proof of anonymity is carried out D L steps using a hybrid argument. To do this, we
define the following games, whexaepresents a number distributed uniformly at random froen th
appropriate group.

W,... : The challenge ciphertext (3:, co, [0831)71, CE?,)l),lL : [CEIB,L) . CECIL))J/)Q]) 7
Wy : The challenge ciphertext (Sk, Co, [(:8)71)71, CET?l),l]v : [C%,L) . CE%),L)Q]) ;
Wi11: The challenge ciphertext (Sk, Co, [*, %], [Cgi?l)z’ cg‘f?m], e [cEgL) . CECB L) 2]) :
Wi 12 : The challenge ciphertext (Eik, Co, [*, *], [*, %], [CE?,Q),P CE??)J]’ e [cgng, CE?J),L)Q]) ;
W, The challenge ciphertext (s, co, [+, ] [, 4], ..., [x, ], [6{) 1 oo {5 1) 2] )
Wp o The challenge ciphertext (s, co, [*, *], [*, %], ..., [, ], [*,%]).

In step(d, [, n) of the hybrid argument, we show th#&t,, ,, is computationally indistinguish-
able from the previous world. Note that the transition fro¥y.,; to W, is the standard concept
of semantic security, and has been proved in the previou®aetn addition,W, ; » is computa-
tionally indistinguishable from a completely random cigkgt, hence is anonymous.

We reduce the anonymity of our MRQED scheme to the hardnebe @ inear problem. We
rewrite the D-Linear problem as given, g™, g*2,Y, g*2*, g*7*] € G, wherezy, 2o, 23, 2, are
picked at random fror,,, decide whethe¥Y” = ¢g***. It is easy to show that this is equivalent to
the original D-Linear problem. For convenience,det= g7, go = g%, g5y = g2, g4y = g7 .

Without loss of generality, we show only how to prove stép [;, n,) of the hybrid argument.

Lemma C.4. SupposeG satisfies thgr, ¢) D-Linear assumption, then no adversary making
decryption key queries, within time— ©(¢D logT'), can distinguish betweeW,, ;, ,, and the
preceding game with more thant 1/p probability.

Proof of Lemma C.4: Let ¢y = (di,l;). We describe a reduction such thatyif = g* 3,
then the simulator produces a ciphertext in which the bl[@zf%h)m, ngz,h),m] is well-formed;
otherwise, ifY" is picked at random, the block is random as well. Hence, ifatieersary can
distinguish between the two scenarios, the simulator ckve $loe D-Linear problem.

Init : The adversary selects a poiit in space that it wishes to attack. Defiig = 7,,(X*).

Setup To create public and private parameters, the simulatos tleefollowing:

1. Pick the following parameters at random fra@i"”"—*:

n 0’ !
“ [O@’”’ﬁ‘”’”’0“0’"’8@7”}@:(dJ)E[D]X[L]7n€[2}7(%n)¢(s@17n1)’ [e‘p’”’Hﬂ"v"]so:(dJ)E[D]X[LLneD]

subject to the constraint that

) * n’ _
[GCp’nISO T 950’” o 0:| e=(d,)€[D]x [L],n€[2],(¢,n)#(p1,m1)
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whereZ; = 7,(X*).

We require that the's, s, §’s and@’’s are forcibly non-zero. In addition, later in Equa-
tion (5), we will need thab,, ,,,Z; + 0, # 0. Hence, the simulator simply aborts if it

©1,m1

happens to pick such that),, ,,Z; + 0, , = 0. Note that this happens with probabil-
ity 1/p, and this explains why th&/p addltlve factor exists in the adversary’s advantage in
Lemma C.4.

2. Compute and release to the adversary the following publiarpeters:

(L Oy 0., / 0’
Q «— e(g,g) s Aoy g < g1 717 bcp1 ny < g2 v Bll a o T 0 # 1 "17[)901 ny < g2 frm,
O 0 n Qp,n O, n 9 n ©w,n
Ay — (g% g1 %) bw<—(g*"gl¢’) ]
/ 0, 0 / AN
a — p.n p.n b p.n p.n
o (g7 ") (g ) p=(d,1)€[D]x[L],n€[2],(p.n)#(p1,m1)

This posits thatv,, ,, = 21, B4, », = 22, both of which are unknown to the simulator.

3. Compute what it can of the private key:

~ w
W= g7 ,3p,,n; < 91, b@l,nl — g2,

a — ga%n’ bcpn — g@p "

@on

n _’nﬂ n / ,nB ,n
Yo — (gemgPm) Ny (gem g Pen) " ]

p=(d))€[D]x[L],n€[2],(¢,n)#(p1,n1)

Note that the simulator does not knaw, ,,, andy/, ...

The following lemma shows that even if we do not know the pat@nsz,, 22, Yy, n, OF Y, .,
we can still compute certain terms efficiently.

Lemma C.5. In step(dy, 1, ny) of the hybrid argument, leb; = (d;,1;). Suppose we are given
(do,ly,ma) # (dy,l1,m1), and letpy = (dz,lz) Suppose/ D, and I D, are nodes such that
O(IDy) = ¢ and ®(IDy) = ¢y and IDy # T, »,- Moreover, suppose we are given € Z,.
Then, even though the simulator does kngy,,, it can efficiently generate the following term,
such that the its resulting distribution is the same as wheis picked uniformly at random.

A A
Wiy ) Wiy, )™ 3)

Moreover, the following two terms can also be computed effigien

a2 b5 (4)

902 nz’ Tp2,m2’

Proof. For simplicity, letae = awy nyy 8 = Bypone- FOri € [2], we use simply; to denoted,,, ..,
and¢’; to denote9/ . We use simply), to denote@w2 g, @Nd6, to denote9’ »np- Notice we do
not defined,, smce&w1 n, and@, . are not defined. Define fare [2], ©; = ¢; - ID; + ¢; and
define®, = 0y - IDy + 0.

Recall that the S|mulator picked parameters such &b@; + 0, . In addition, since
IDy # 17, andd, # 0,

Oy =0y 1Dy + 0, #0
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First, the simulator pick uniformly at random and define

2’2)\1@1

Ao =\ — —nc—.
Oéﬁ@g

Observe thah, is distributed uniformly, but we cannot computg efficiently because we do
not knowz,. However, since we know?2, we can compute’2 efficiently. Hence, it follows that
we can compute the two terms in (4) efficiently in the follog/way.

- Ao\ — —A Ao\ —
a2, = (g) "% b2 = (g™)"

It remains to show how to compute the term in (3). Rewrite (ealow:

_ _ A2
1D, / 1 IDsy / o 21221 91[D1+9/ aﬁ(92+2102)1D2 Ozﬂ(@l +219/)
(ygol,nl y<p1,n1 ) ' ( 2,12 ytpg,’ng g ( 1> ' g g 2 2

292122/\1@1+O¢ﬁ(@2+Z1@2)(/\722)\161/O¢ﬂé2) _ gaﬁ®2)\ . <gz1)aﬁ@2)\ . (gzz)f)q@l@z/@zj

)

which can be computed efficiently giver andg*. [

Phase 1:Suppose the adversary makes a decryption query for thedngpamgleB (s, t1,...,sp,tp).
SinceB does not contaiX*, there exists a dimensiofy € [D] such thatv) ¢ [s4,,tq,], Where

ry, is X* projected onto thell" dimension. Hence, exactly one of the following cases must be
true:

Case 1: Forall D € Ay, (B) such that®(ID) = 1, ID # I, (X*).

Case 2: There existsD € A4, (B) such thatb(/D) = ¢, andID = Z,, (X*). Note that in this
case, for alllD’ € Ay (B) such that/D" # ID, ID" # I,(X*), wherey' = ®(ID');
moreover, there exists a dimensidg such that for alll Dy, € Ay (B), IDy # Z,,(X*),
whereg, = ®(1Dy).

Figure 3 illustrates the above two cases with a 2-dimensiexample. We now explain how the
simulator generates the decryption key in each of the abasesc

Case 1. (a) Pick at randoffis],c;p €r G, such thal [,y fia = ©.

(b) For each/D € A”(B) wherey := ®(ID) # ¢, pick at random\;p 1, A;po. Let
DK(I/D) = (kmﬁo, [k%’l, k%l}, [k%,% k%,z]) represent the element DK for 7D,
compute and relead@K (/D) as below:

~ A n
kipo < Hq - 11 (y{a{%?/&,n) "
nel2]

(a) —A1pn 1, (b) —AIDn
|:kID,n < Apn 7kID,n — byn

Y

:| nel2]
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dz

.X* case 1 .X* case 1
.X* case 2
. X* case 1
49 10 d 13 4 9 10 T
(a) (b)

Figure 3: A 2-dimensional example: Relative position betw@& and the queried hyper-
rectangle. (a) Each small rectangle shown is a simple rectangle. Along d#&oen/,, ranges
[3,4] and[9, 10] correspond to nodes at levil (b) The interval tree corresponding to dimension
dy.
(c) Foreach D € A¥(B) suchthatb(/D) = ¢4, the simulator can compute the following
DK(ID) efficiently:
~ )\ n
kipo < fia, - T1 (o 0u0) """
nel2]
K0 i K, bl

i| nel2]

Since the simulator does not knaw, .., ory,, ,,, it needs to use Lemma C.5 to gen-
erateDK (/D). Letn' # n,. To apply Lemma C.5, the simulator first picks at random
AIp.n,, and rewrites;p o as

o~ ID 1 AID,ny ID AID,n!
kID,O = Hdy - (yapl,mysm,m) ) (ysm,n’ym,n/)

SincelD # Z,,(X*) , the simulator can apply Lemma C.5 by substitutirig /5, n.)
in the lemma with(dy, [, n"), andX; with A;p ,,,; in addition, both/ D, and/ D, in the
lemma are substituted withD.
Case 2: (a) Pick at randofg],p €r Z, suchthab . ) 1 = w.
(b) Foreach D € AY(B)—A4 (B)—Aq4 (B)wherep := ®(ID) = (d,1),d # dy andd #
dy, ple at randorn)\[DJ, AID’Q. Let DK(ID) = <k[D’0, [k§%71, kgbl))J], [kgal))g, k§%72}>
represent the element IDK for 7 D, compute and relead@K (/D) as below:

AIDn
kipo < g" - 11 (yé{%y:a,n) "
ne(2]

(a) —ArD;n | (b) —AID,n
kID,n — aApn 7kID,n — by

:|n€[2]
(c) LetID € Ay (B) andID = T, (X*). There exists exactly one sué¢iy. The simula-

_ ADn
tor picks at randomy;,, €r Z,. DefineY = <y£’3nly;ml> s
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(d) Foreach D € A, (B) wherepy = (do, 1) := ®(/D), compute and releadeK(/D):

AID.n
kip,o < gHdo - T - 1—[[] (yslogny:oo,n) "
nel2

K = 3t K = D"

ne(2]
This implies thati,;, = ¢g*% - T. Note thatY cannot be computed efficiently, as the
simulator does not knowy,, ,,, ory,, ,.,. However, sincd D # Z,,,(X*), the simulator
can apply Lemma C.5 by substitutiids, [», no) in the lemma with(dy, [, 1), A; with
AD oy I D1 With 1D, andI D, with ID. The remaining terms ik, p o can be computed
efficiently.

(e) ForeachD € Ay (B) wherey| = (dy,l) := ®(ID) # ¢, compute and release
DK(ID):
kipo — ' - Y1 I (y'P o D
D0 9 oty o n
k(a) —AIDn k(b) b*/\ID,n

ID;n < A n ID;n “ Byln

] ne(2]

This implies thati;, = g“4 - T~!. Note thatY ! cannot be computed efficiently,
as the simulator does not knayy, ,,, ory/, ., . However, sincd D # 7. (X*), the
simulator can apply Lemma C.5, by substitutiidg, l,, n2) in the lemma with(d,, , 1),
A1 with —AiBny s I D1 with D, andID, with ID. The remaining terms iR;p o can
be computed efficiently.

(f) For ID, letn’ # n,. Pick A5 @t random froniZ,. Then compute and release the
following DK(ID):

— A
. g, . Y—1 . D, ID.n
ka,O gt T H (ylpl,nytpl,n> ’

ne(2)

k(a) _Aﬁ,n k@ b_Aﬁ,n

? }
p1,m P1,m
TDn "“TDn nef?]

As before, hergiy, = gha - Y71, k750 €an be computed because the terms containing
. ey )‘m,n/
Yo m1 andyjplm cancel out, Ieavmgﬁ70 = gHd - (yéﬁn,yfpm,> .

(g) For eachiD € A4 (B) such thatd(ID) = ¢, andID # ID, compute and release
DK(ID):

1 D . AID,n
kID,O - gudl T H (ysohnysﬁl,n) ’

ne(2)
(3) 7)\ID,’VL (b) 7)\ID.,7L
kID,n S Ap1n ak[Dm — bgol,n
ne(2)

Again, to be able to generakgp o, Lemma C.5 is required. However, in this case, a
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slight complication is involved, since two termskpp, o containy,, », andy,, .-

(0] — A n
k([D) — g“rh . T L, H (yilD,ny:Ol’n) 1D
ne(2]

_ -5 N
— qMdy , [, ID 7 L H ID IDn
g (y‘m’"lywl’”l (ywhny@l,n)
ne(2]

I A
_wa ID 1 Dy ID Aipny \ (. ID 4 Arp !
=g (<y¢1,n1y§01,n1) <y<,017n1y§01,n1) ( smm’y@l,n/)

Now the simulator picksp ,,, at random frorr%;, and computes

Opymy - 1D + 0!

ADay = Aipn — e \(ID) 5
IDmny ID, 199017”1 '[D‘{‘eclphnl ni ( )

Here we require that,,, ,, - ID + 0/, , # 0. Notice that/D = I . As we ex-
plained in theSetup stage, the simulator aborts if it happens to pick,, ;s such

thatf,, ., Z;, + ¢, ,, = 0. Hence,

Y1,m1

- XiD.n A
o bdy . ID / S 1D / ID,n'
kID,O =g <y¢1,n1yap1,n1) ( ¢1,n/y¢1,n’)

And now the simulator can apply Lemma C.5 by substitutidig /5, n2) in the lemma
with (dl, ll, 77,/), A1 with )‘1D7n11 1D, with E, andID2 with ID.
Challenge On receiving a messa@dsg from the adversary, the simulator does the following:
1. Pick random integer$, ] _ 4 yeipixnimeiz € Zn -
2. Compute and release the following as the ciphertext.
*, gétla [*, *]7 ey [*7 *]7 (g2><4)6v1’n11;1+0&1'n17 Y9¢1’n11—21+9:p1’n1 )
|:g7'ap,nﬁ<p,n(eap,nl-:;+9:p,n)7 (g;;l . gf'r‘gpyn)a‘%”(etﬂynz;—‘re(lp,n

)
(d1,l1,n1)<(d,l,n)<(D,L,2),0=(d,l)

where(d,l,n) < (d',l',n') ifand only if 1)d < d’; or 2)d = d' andl < I’; or 3) (d,l) =
(d',I"yandn < n'.
Note that this implies that = z3 + 2z, andr,, ,,, = z. If Y = ¢**, it is easy to verify that the
ciphertext is well-formed, due to the fact that

) * N’ o
[ew’n1¢ + 0907” - O] (d,l,n)#(uﬁ,ll,nl),cp:(d,l)

If Y is a random number, then temﬁz?ll),
the ciphertext.

_is random and independent of the remaining terms of

n
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Phase 2 Phase 1 is repeated.

Guess If the adversary guesses that the ciphertext is an enorypfiMsg underX*, the simulator
guesses that = ¢g**#, Else if the adversary guesses that the ciphertext is thggtan under a
random point, then the simulator guesses tha picked at random fror. [ |

Proof of Theorem C.3: The theorem follows naturally from Lemma C.4 and the hybrglarent.
[

D Adaptive-ID Security

Definition 12 (MRQED adaptive securityAn MRQED scheme &laptively secureif all polynomial-
time adversaries have at most a negligible advantage in dag@tve security game defined below:

e Setup The challenger runs thgetup (X, LA ) algorithm to generatPK, SK. It givesPK
to the adversary, but does not divulgk.

e Phase 1 The adversary adaptively issues decryption key querids/foer-rectangleB,, B,, ..., B,.

e Challenge The adversary submits two paifX;, Msg,), (X7, Msg, ), whereX{, X1 €
La, andMsg,, Msg, € M are two equal length messages. FurthermXgandX; are
not contained in any hyper-rectangles querieBliase 1i.e., for0 < i < ¢y, X ¢ B;, and
X3 ¢ B,. Now the challenger flips a random cotn,and encryptdMsg, underX;. The
ciphertext is passed to the adversary.

e Phase 2 Phase 1 is repeated. The adversary adaptively issuesptiecrkey queries for
hyper-rectangleB, 1, B, 12, . .., B,. As before, all hyper-rectangles queried in this stage
must not contairXy andX; specified in the previous stage.

e Guess The adversary outputs a guessf b.

We define the adversary’s advantage in the above game as
Prip = b] 1'
2

The difference between the two notions of security is thatdlective security, the adversary
commits to two pointsX{ and X7 at the beginning of the security game. Therefore, selective
security is weaker than adaptive security. In Appendix C, v the selective security of our
construction under the Decisional BDH and the DecisionaéamAssumption in bilinear groups
of prime order.

Previous research has shown that IBE schemes secure ingbt\s=ID sense can be converted
to schemes fully secure [6, 18, 45, 36] with some loss in sgcun particular, Boneh and Boyen
prove the following theorem:

Theorem D.1([6]). A (¢, ¢, €)-selective identity secure IBE systelD-sID-CPA) that admitsNV
distinct identities is also &, ¢, Ne¢)-fully secure IBE (ND-ID-CPA).

This technique can be applied to our case to achieve full denfiality and anonymity. In our
case, the scheme admits= T'” identities and hence that would be the loss factor in sgcurit

AdVA(E) =
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E Trivial MRQED Construction

We first describe the trivial construction for one dimensibat A = (K, £, D) denote a secure
public key encryption schemeC, £, D represent the key generation, encryption and decryption
algorithm respectively. We build a MRQEDased ond€ as below.

e During Setup, one runsk, the key generation algorithm)(7?) times to generate the fol-
lowing public and private keys:

PK = {pk,, |1 <s<t<T}, SK={sk,|l<s<t<T}
e Toencrypt a paifMsg, x) wherez is a point betweem and7’, firstdefineforl < s <t¢<T

M if s<z<t
bou(Msg,z) =4 "2 " ="
’ i otherwise
where L denotes the “invalid message”. Now one runs the encryptgorighm £, and for
all rangegs, t| C [1,77, one encrypts, ,(Msg, z) underpk, ,. The result of encryption is a
tuple of length’™, denotedc; 1, c19, ..., cr7).

e To release a decryption k&K ; for range[s, t] C [1, T}, one releases the kel ;.

e To decrypt a ciphertext = (¢y1,c¢12, ..., crr) With DK ;, one use®DK ; to decryptc, ;.
Decryption either yieldd., if the pointz encrypted does not fall within the ranget|; or it
yields the messagelsg, if « falls within [s, ¢].

Clearly, the trivial MRQED construction results i©(7?) public key size,O(7?) encryption
overhead and ciphertext size(1) decryption key size an@(1) decryption cost.

One can easily extend the trivial construction into muétigimensions. The resulting MRQED
scheme requires that one encryptMsg, X) for all hyper-rectangleB in space. Therefore, the
trivial MRQEDP” scheme ha®(T2P) public key sizeO(T?") encryption cost and ciphertext size,
O(1) decryption key size an@(1) decryption cost.

F AIBE-Based MRQED?” Construction

In Section 4.2, we described an AIBE-based MRQEBheme. The same idea can be applied to
construct an MRQEB scheme by making the following analogy between MROBEBRd MRQED.

In MRQED, if a range[s, t| can be represented by a single noderi{f1"), then we say that
s, t] is asimple rangeln other words, a range, t| C [1, 7] is a simple rangéf |A(s,t)| = 1.

Recall that in MRQED, tr(T) is the set of all nodes in the tree. We can also reggff) as
the collection of all simple ranges: faD € tr(7), cv(ID) is a simple range. Therefore, we can
think of an7 D as denoting a simple range ih 7). In MRQED', when we encrypt under a point
x, we encrypt under all Ds intr(7") coveringz. In other words, we encrypt under every simple
range containing point. When we issue decryption keys for rarigef], we issue a key for every
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ID € A(s,t), that is to say, we denots, t] as the collection of simple ranges, and issue a key for
every simple range in that collection.

The analog of a simple range in multiple dimensions smaple hyper-rectangleTo define
a simple hyper-rectangle, we first build interval trees, one corresponding to each dimension.
We assign a globally uniquéD to each tree node. Simply put, a simple hyper-rectangle is a
hyper-rectangld, in space, such thd, can be represented by a single node in the tree of every
dimension. More specifically, a hyper-rectan@és;, t4, ..., sp, tp) in space is composed of a
range along each dimension. If for all< i < D, |A(s;,t;)| = 1, i.e., [s;, t;] is a simple range
in thei* dimension, then we say that the hyper-rectadgyle, ¢,, . .., sp, tp) is asimple hyper-
rectangle A simple hyper-rectangle can be defined by a single node &ach dimension. We can
assign a unique identity to each simple-rectad®iés,, i, ..., sp,tp) in space. Define

idg, = (ID1,1D,,...,I1Dp),

wherel D;(1 < i < D) is the node representing, ¢;] in the:®" dimension.

Analogous tatr(7'), we now definel to be the sel{idBO|B0 is a simple hyper-rectang}le U
can be thought of as the set of all simple hyper-rectanglepaice. Analogous tov(/ D) defined
for one dimension, definev(idg,) = By. Below we defind?* and A* analogous td& andA in
one dimension:

e Set ofid’s covering a point X. For a pointX in spaceP*(X) is the set of alld’s in U
such thafX € cv(id); hence, in this cas@®* (X) is the set of all simple hyper-rectangles that
contain the poinX. LetX = (z1,x9,...,2p). Itis not hard to see that the cross-product
Py (X) x Py(X) x ... x Pp(X) define all simple hyper-rectangles containXig Therefore,
P(X) = P1(X) x Po(X) x ... x Pp(X); and for anyX € La, [P(X)| = O ((log T)?).

e Hyper-rectangle as a collection ofid’s. For any hyper-rectangiB(sy,t1,...,sp,tp) in
space\* (B) is the the minimal subset &f such that J;c < g, cv(id) = B. In other words,
A*(B) is the minimal set of simple hyper-rectangles that jointbyer the hyper-rectangle
B. For convenience, denotg;(B) := A(sq4, t4), Aa(B) is the minimal set of nodes covering
range|sq, t4) in thed" dimension. It is not hard to see that

A*(B) = A1(B) x Ay(B) x ... x Ap(B)

In particular, for everyid = (IDy,1Ds,...,IDp) € A*(B), whereID;(1 < i< D)isa
node in the tree corresponding to tffedimension;d defines a simple hyper-rectandsy;
andA*(By) = {(IDy,ID,,...,IDp)}. Itis not hard to check that for any hyper-rectangle
B C La, [A*(B)] = O ((log T)?).

The above definitions satisfy the following properties: BgrointX and a hyper-rectanglB, if
X € B, thenP*(X) N A*(B) # (; in addition, they intersect at only one simple hyper-regte.
Otherwise, ifX ¢ B, thenP>*(X) N A*(B) = (.

Now we may apply the same AIBE-based construction of Sectidricithe multi-dimension
case. The resulting scheme encrypts a mesSégeunder every simple hyper-rectangle in spaces
that contain the poinK = (z1,z9,...,2p). This is equivalent to encryptinyIsg under every

43



id € P*(X), whereP*(X) is the cross-product of all paths from a leaf node represgntj, to
the root of the tree in thé" dimension:P*(X) = P;(X) x Py(X) x ... x Pp(X). To release
the decryption key for hyper-rectangl® it releases the key for a set of simple hyper-rectangles
that compos@. In other words, we release the key for every A*(B). Since bottP*(X) and
A*(B) have sizeO ((log T)”), the AIBE-based MRQEB scheme ha® ((log T')”) encryption
cost, ciphertext size, and decryption key size.

Now we examine the cost of decryption. Supp@3Kg is our decryption key for hyper-
rectangleB, andDKp is composed of a keyg, for every simple hyper-rectangle iv*(B). Let
C denote a ciphertext under poit. C consists of a componeng, for every simple hyper-
rectangle containing the poiX. Now if we naively try everykg, over everycg,, then de-
cryption cost would be (|P*(X)| - |[A*(B)]), and in this caseQ ((logT")*”). However, just
as in the one dimensional case, we know that and /D’ cannot be equal if they are at dif-
ferent depths in the tree. Defirf¢/ D) to extract the depth of nodeD in its tree. Forid =
(IDy,ID,, ..., IDp), wherelD; is a node in the tree corresponding to tHedimension, de-
fine £(id) = (¢(IDy),{(IDs),...,£(IDp)). Therefore, we only need to tig, over cg, when
((idg,) = ((idg,). Of course, we cannot directly releaB§ for the ciphertexicg,, since the
ciphertext is meant to hide the poikt being encrypted. However, observe that since we are en-
crypting a message under &l € P;(X) x P5(X) x ... x Pp(X), £(id) naturally establishes
a bijection betweenry € C and(l1,ls,...,lp) € [L]”. Therefore, we can releagéd) along
with every ciphertext;qy without leaking any information abo. Now since we only need to try
kg, overcg, When((idg,) = /(idg, ), the decryption cost is reduced &((log 7)”) instead of
O ((log T)?P).
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