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ABSTRACT
We present an efficient protocol for privacy-preserving evaluation
of diagnostic programs, represented as binary decision trees or
branching programs. The protocol applies a branching diagnos-
tic program with classification labels in the leaves to the user’s
attribute vector. The user learns only the label assigned by the
program to his vector; the diagnostic program itself remains secret.
The program’s owner does not learn anything. Our construc-
tion is significantly more efficient than those obtained by direct
application of generic secure multi-party computation techniques.
We use our protocol to implement a privacy-preserving version

of the Clarify system for software fault diagnosis, and demonstrate
that its performance is acceptable for many practical scenarios.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption; I.2.1 [Artificial Intelligence]: Ap-
plications and Expert Systems

General Terms
Algorithms, Security, Performance

Keywords
Privacy, Data Mining, Diagnostics, Branching Programs

1. INTRODUCTION
Diagnostic programs, typically represented as decision trees or

binary branching programs, are the cornerstone of expert systems
and data analysis tools. Learning and evaluating diagnostic pro-
grams which classify data on the basis of certain features are among
the most fundamental data mining tasks.
Evaluation of a diagnostic program on a remote user’s data of-

ten presents privacy risks to both the user and the program’s owner.
The program’s owner may not want the user to learn the entire con-
tents of the diagnostic program, while the user may not want to
reveal his local data to the program’s owner. For example, con-
sider a medical expert system, where the diagnostic program is the
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realization of a substantial investment, and the data on which the
program is evaluated contain information about the user’s health.
Another example is remote software fault diagnosis, which is an

increasingly popular support method for complex applications. The
details of remote software diagnostic systems differ (see Section 5),
but there are many commonalities. An application does something
undesirable (crashes, becomes slow or unresponsive, quits with an
obscure error message), and the runtime system gathers some data
about the problem. The software manufacturer uses this informa-
tion to diagnose the problem, usually by reading a small subset of
the data. Users are typically required to ship all fault-related data to
the manufacturer. For example, most users of Microsoft Windows
have encountered the (in)famous “send error report” button.
The data gathered by the runtime system may contain sensitive

information, such as passwords and snippets of the user’s docu-
ments. Many users are not willing to reveal this information to
the software manufacturer. On the other hand, software manufac-
turers often view their proprietary diagnostic programs as valuable
intellectual property. Diagnostic programs may reveal the applica-
tion’s support history, unpatched security vulnerabilities, and other
information about the implementation and internal structure of the
application that the manufacturer may prefer to keep secret.
This paper describes a method for privacy-preserving evaluation

of diagnostic branching programs. This problem is different from
privacy-preserving learning of decision trees, which has been the
subject of much research [1, 4, 22]. We assume that the diagnostic
program already exists, in the form of a binary decision tree or
branching program, and investigate how to apply it to the user’s
data in such a way that the program is not revealed to the user, and
the user’s data are not revealed to the program’s owner.

Our contributions. We present a practical, provably secure inter-
active protocol for privacy-preserving evaluation of branching pro-
grams. The protocol takes place between a Server, in possession
of a binary branching program T , and a User, in possession of an
attribute vector v. The User learns c = T (v), the diagnostic label
that T assigns to v. The Server may or may not learn the label—we
consider both variants.
Our protocol does not reveal any useful information except the

outcome of the computation, which is the diagnostic label in this
case. In particular, the User does not learn how the branching pro-
gram arrived at the diagnosis, nor which of the User’s attributes
it considered, nor the topology of the branching program, nor any
other diagnostic labels that it may contain. The Server, on the other
hand, learns nothing whatsoever about the User’s local data.
We emphasize the strong privacy properties achieved by our pro-

tocol. For example, secrecy of the program being evaluated is
not the standard requirement of secure multi-party computation,
which usually assumes that the program is public, and only the par-



ties’ respective inputs are secret. In many of our applications, the
user should not learn which of his attributes are considered by the
branching program. If the attribute vector is very large (as is the
case, for example, in software fault diagnostics, where the attribute
vector is a record of the user’s runtime environment), achieving
these security properties efficiently is a difficult challenge.
Our branching program evaluation protocol combines in a novel

way several cryptographic techniques such as homomorphic en-
cryption, blinding, and Yao’s “garbled circuits” method. Yao’s
method is used in a somewhat unusual way, not simply as a black-
box realization of secure circuit evaluation. We exploit the details
of circuit representation in Yao’s protocol to implement a condi-
tional oblivious transfer primitive needed by our protocol.
We present a substantial case study, in which we use our method

to implement a privacy-preserving version of Clarify [17], a system
for remote diagnosis of software faults. We apply our protocol to
the decision trees generated by Clarify for several large, real-world
applications such as gcc and latex, and demonstrate that its per-
formance is efficient for many practical scenarios.
While there have been many theoretical results in the field of

secure multi-party computation, actual implementations and work-
ing systems are extremely rare. Experimental evaluation of our
prototype implementation demonstrates that our protocol performs
significantly better than the generic methods.
The paper is organized as follows. We describe related work

in Section 2, and our cryptographic toolkit in Section 3. In Sec-
tion 4, we present our protocol. In Section 5, we apply it to privacy-
preserving software fault diagnosis, and analyze its performance in
Section 6. Conclusions are in Section 7.

2. RELATED WORK
This paper follows a long tradition of research in the secure

multi-party computation (SMC) paradigm. Informally, security of
a protocol in the SMC paradigm is defined as computational in-
distinguishability from a simulation of some ideal functionality, in
which the trusted third party accepts the parties’ inputs and carries
out the computation. Formal definitions for various settings can be
found, for example, in [2, 7, 15].
Any probabilistic polynomial-time multi-party computation,

represented as a circuit or a binary decision diagram, can be con-
verted into a “privacy-preserving” one using generic techniques
of Yao [40] and Goldreich et al. [16]. Generic constructions,
however, tend to be impractical due to their complexity (e.g.,
see the comparison of our techniques with the generic approach
in Section 4.5). Recent research has focused on finding more
efficient privacy-preserving algorithms for problems such as com-
putation of approximations [10], auctions [31], set matching and
intersection [12], surveys [11], and various data mining problems.
Some SMC research has used branching programs instead of cir-

cuits as function representation [14,29]. It is still the case, however,
that when computing f(x, y) securely, f is assumed to be known
to both parties, while x and y are their private inputs. In our sce-
nario, we are computing g(y), where g is the private input of the
first party and y is the private input of the second party. This can
be implemented by making f a generic function evaluator and x a
description of the particular function g. As we show in Section 4.5,
this approach does not scale to the size of branching programs that
arise in real-world applications. Selective private function evalu-
ation [8] considers evaluation of functions on large datasets, but
the functions are much simpler than the branching programs con-
sidered in this paper. To achieve practical efficiency, our protocol
fundamentally relies on the structure of branching programs.
Many papers investigated the problem of privacy-preserving de-

cision tree learning, both in cryptographic [22] and statistical [1,4]
settings. Decision tree learning is a machine learning technique for
building a compact classifier that best represents a set of labeled ex-
amples. The problem considered in this paper is privacy-preserving
evaluation of decision trees and branching programs, which is fun-
damentally different (and complementary) to the problem of tree
learning. For example, in our protocol the tree is an input, whereas
in the privacy-preserving learning protocols the tree is the output.
Concurrently and independently of this work, Ishai and Paskin

presented a protocol for evaluating a branching program P on an
encrypted input x in such a way that only P (x) is revealed to the
evaluator [19]. The representation of P must contain only single-
bit decision nodes and output a single bit. This protocol appears im-
practical for scenarios such as remote software diagnostics where
the user’s input contains thousands of 32-bit values.
Crypto-computing [36] considers the problem of a circuit owner

obliviously evaluating the circuit on encrypted inputs. While in our
construction the User evaluates an encrypted branching program, in
the crypto-computing paradigm the Server would perform the com-
putation on the encrypted attribute vector. It is not clear whether the
theoretical techniques of [36] lend themselves to a practical imple-
mentation, and shifting the burden of evaluation to the Server is not
desirable in practical applications.
Several papers considered problems which are superficially sim-

ilar to our remote software diagnostics scenario. The Scrash sys-
tem [5] removes sensitive information from the crash data, thus en-
abling users who are concerned about privacy to assist in building
a software crash diagnostic. Scrash requires re-compilation, and
assumes that users have access to the program’s source code. By
contrast, we focus on privacy-preserving evaluation of “black-box”
fault diagnosis programs. Unlike Scrash, our system can be applied
to commercial software applications, which are compiled without
symbols and distributed without source code.
The Friends Troubleshooting Network system [18, 38] allows

participants in a trust network to collaborate in order to diagnose
software errors. By contrast, we assume that the diagnostic tool is
controlled by a single party (e.g., the software manufacturer). Fur-
thermore, our protocol is cryptographically secure.

3. CRYPTOGRAPHIC TOOLS

3.1 Oblivious transfer
Oblivious transfer (OT) is a fundamental cryptographic primi-

tive [21, 35]. A 1-out-of-2 oblivious transfer, denoted as OT 1
2 , is

a protocol between two parties, the Chooser and the Sender. The
Chooser’s input is the index i ∈ {0, 1}. The Sender’s inputs are
the values x0, x1. As a result of the protocol, the Chooser learns xi

(and only xi), while the Sender learns nothing.
In our constructions, we use oblivious transfer as a “black-box”

primitive, i.e., our constructions do not depend on a particular OT
implementation. In our implementations, we employ the Naor-
Pinkas constructions for OT 1

2 [30]. Each instance of OT 1
2 re-

quires one online and one offline modular exponentiation for the
sender, and one online and one offline modular exponentiation for
the chooser. Amortization techniques of [30] can achieve fewer
than one exponentiation per oblivious transfer, but reducing the
number of exponentiations by more than a constant factor requires
an impractical increase in the communication complexity.

3.2 Homomorphic encryption
A homomorphic encryption scheme is a semantically secure

cryptosystem that permits algebraic manipulations on plaintexts
given their respective ciphertexts. In this paper, we require an en-



cryption scheme with an additively homomorphic property, which
allows E[x1 + x2] to be computed from E[x1] and E[x2].
In our prototype implementation, we use the Paillier cryptosys-

tem [34]. This is sufficient when the participants are semi-honest.
If security against malicious participants is required, the homomor-
phic encryption scheme needs the additional property of verifia-
bility: there should exist efficient zero-knowledge proof systems
which enable a participant to prove certain relationships between
the encrypted plaintexts and previously committed values (see Sec-
tion 4.4). Such efficient proof systems are not known for the Paillier
cryptosystem. In the malicious case, the protocol should be imple-
mented with a homomorphic, verifiable cryptosystem, e.g., the ho-
momorphic version of the Camenisch-Shoup cryptosystem [6, 20].

3.3 Garbled circuits
Garbled circuits are a fundamental technique in secure multi-

party computation. Originally proposed by Yao [40], the garbled
circuits method enables secure constant-round computation of any
two-party functionality. We only give a brief overview here; a de-
tailed explanation can be found in [23].
Let C be a boolean circuit which receives two n-bit inputs x =

x1 . . . xn and y = y1 . . . yn, and outputs bit C(x, y) ∈ {0, 1}. (If
the circuit takes only one input, we denote the other input as ⊥.)
Consider Alice and Bob who wish to securely compute C(x, y),
where x is Alice’s input, y is Bob’s input. Yao’s method transforms
any C into a secure garbled circuit C′, which enables computation
of C(x, y) without revealing x to Bob or y to Alice.
For each wire i of the circuit, Alice generates two random wire

keys w0
i and w1

i . These wire keys are used as labels encoding,
respectively, 0 and 1 on that wire. Now consider a single gate g
in C, described by some boolean function g : {0, 1} × {0, 1} →
{0, 1}. Let the two input wires to g be labeled A and B, and let
the output wire be labeled C. The corresponding wire keys are
w0

A, w1
A, w0

B , w1
B , w0

C , w1
C .

The garbled gate g′ of circuitC′ is defined by a random permuta-
tion of the following four ciphertexts, where {x}κ is a symmetric-
key encryption of plaintext x under key κ (see [23] for the proper-
ties that the encryption scheme must satisfy).

c00 = {{wg(0,0)
C }w0

B
}w0

A
c01 = {{wg(0,1)

C }w0
B
}w1

A

c10 = {{wg(1,0)
C }w1

B
}w0

A
c11 = {{wg(1,1)

C }w1
B
}w1

A

Alice garbles all gates of the circuit in this manner, and sends the
entire garbled circuit to Bob.
Garbled circuit evaluation proceeds as follows. For each input

wire i associated with Alice, Alice simply sends to Bob the wire
key wbA

i encoding Alice’s input bit bA on that wire. This leaks
no information about the value of bA because the wire keys are
random. For each input wire j associated with Bob, Alice and Bob
engage in OT 1

2 protocol. Alice’s inputs as the sender are the two
wire keys w0

j and w1
j , and Bob’s input as the chooser is his bit bB

on that wire. As a result of the OT protocol, Bob learns the wire
key wbB

j encoding his input without revealing bB to Alice.
Bob evaluates the circuit starting from the gates where he has a

wire key for each input wire. For each such gate, Bob can decrypt
exactly one of the four ciphertexts, and learn the key wC encoding
the value of the gate’s output wire. If the output wire is used as an
input into another gate, Bob continues the process. This evaluation
procedure maintains the invariant that, for each circuit wire i, Bob
learns exactly one wire key wb

i . This wire key is random and thus
leaks no information about the bit b it “represents.”
In the standard Yao’s method, Alice provides a mapping for the

wire keys w0
out and w1

out of each circuit output wire out to 0 and

1, respectively. This allows circuits transformed by Yao’s method
to be used as “black boxes” which have the same functionality as
normal circuits, but hide the parties’ respective inputs.
In our constructions, we use Yao’s garbled circuits to implement

secure integer comparison (see Section 3.4). In contrast to the stan-
dard black-box functionality, Alice does not provide a mapping
from w0

out and w1
out to 0 and 1; instead, we consider w0

out or w1
out

to be Bob’s final output from evaluating the circuit. Furthermore,
w0
out and w1

out can be arbitrary strings of our choosing rather than
random strings. Using Yao’s method in this non-standard way al-
lows us to implement a conditional oblivious transfer, in which
Bob learns exactly one of two values depending on the output of
the function encoded by the circuit.
Our prototype implementation uses the Fairplay implementation

of Yao’s method [24] to construct the integer comparison circuits,
which are described in detail in Section 3.4. We refer to it as the
YAO subroutine, which, on input of a two-party functionality, pro-
duces its garbled-circuit implementation.
To achieve security against malicious (as opposed to semi-

honest) participants, it is necessary to use an implementation of
Yao’s method which is secure in the malicious model and operates
on committed inputs [20].

3.4 Privacy-Preserving Offset Integer Com-
parison

Our protocol for the evaluation of branching programs requires
a secure sub-protocol for the comparison of integer values. The
Privacy-Preserving Offset Integer Comparison protocol takes place
between two parties, Alice and Bob. Bob has an �-bit integer x,
while Alice has �-bit integers b and t, and output keys h0 and h1. At
the end of the protocol execution, Bob learns h0 if x−b mod 2� <
t and h1 otherwise, while Alice learns nothing. We denote this
functionality as COMPARE(x, b, t, h0, h1). Note that in the special
case where b = 0, and h0 and h1 are the single bits 0 and 1, this is
the same as Yao’s millionaires’ problem.
This problem is also known as conditional oblivious transfer

with a “greater than” predicate [3]. We assume that participants
are computationally bounded, since the encryption scheme used in
our protocol is only computationally secure. In this case, Yao’s
method is the most efficient currently known approach [3].
Yao’s garbled circuits provide a relatively efficient protocol for

integer comparison because the circuit needed to compare two �-
bit integers is relatively small. As described in Section 3.3, in our
protocol the circuit creator does not provide the mappings from
output-wire keys to actual output-wire bits, so that Bob learns one
of the two keys, but not the actual result of the comparison.

4. SECURE EVALUATION OF BRANCH-
ING PROGRAMS

We now describe our protocol for the secure evaluation of binary
branching programs. The protocol is executed between a Server,
in possession of a branching program (formally defined in Sec-
tion 4.1), and a User, in possession of an attribute vector. Let k
be the number of nodes in the branching program, and n be the
number of attributes.
In most practical scenarios, n is significantly larger than k; our

protocol is optimized for this case. In particular, the size of the
securely transformed branching program is independent of n.

4.1 Branching programs
In this section, we formally define branching programs, which

include binary classification or decision trees as a special case. Let



V = v1, . . . , vn be the vector of User’s attributes. Each attribute
value is an �-bit integer. (In our experiments, � = 32, which ap-
pears to be sufficient for most practical scenarios.)
A binary branching program T is a triple 〈{P1, . . . , Pk}, L, R〉.

The first element is a set of nodes. For i ≤ l, Pi are decision nodes.
For i > l, Pi are classification nodes.
Decision nodes are the internal nodes of the program. Each de-

cision node is a pair 〈ti, αi〉, where αi is the index of an attribute,
and ti is the threshold value with which vαi is compared in this
node. The same value of αmay occur in many nodes, i.e., the same
attribute may be evaluated more than once. For each decision node
i, L(i) is the index of the next node if vαi ≤ ti; R(i) is the index
of the next node if vαi > ti. Functions L and R are such that the
resulting directed graph is acyclic.
Classification or diagnosis nodes are the leaf nodes of the pro-

gram. Each leaf node consists of a single classification label 〈di〉.
To evaluate the branching program on some attribute vector V ,

start at P1. If vα1 ≤ t1, set h = L(1), else h = R(1). Repeat the
process recursively for Ph, and so on, until reaching one of the leaf
nodes and obtaining the classification.

4.2 Security requirements
The objective of our protocol is to securely evaluate T on V . The

protocol should reveal nothing to the Server. The User should learn
T (V), which is a classification label contained in one of the leaves
of the branching program T . The User is also permitted to learn the
total number of nodes of T (see the discussion in Section 4.6) and
the length of the path from the root node of T to the leaf containing
the result of evaluation, i.e., the label assigned by T to V .
The User should not learn anything else about T . In particular,

the User should not learn which attributes from V have been con-
sidered by T , with what threshold values they have been compared,
the outcome of any comparison, and so on.
The requirement that attribute selection be oblivious precludes a

naı̈ve application of secure multi-party computation (SMC) tech-
niques. In standard SMC, each participant knows which of his in-
puts have been used in the computation. While it is possible to
create a circuit that takes all of the User’s attributes as inputs and
ignores those not used by T , this circuit would be impractically
large (V may contains tens of thousands of attributes). A detailed
discussion can be found in Section 4.5.

4.3 Secure branching program protocol
The protocol runs in three phases.

Phase I (offline): Creation of the secure branching program.
This is an offline pre-computation executed by the Server. Using
Algorithm 1, the Server converts the original branching program
T into its secure equivalent T ′. Algorithm 1 does not require any
interaction with the User or knowledge of the User’s identity. For
example, the Server may maintain a large store of secure branching
programs (all representing differently randomized transformations
of the same T ), which is replenished during idle periods when the
Server’s machines have many spare cycles.
Algorithm 1 converts the nodes in the branching program T into

secure nodes in the branching program T ′. Each classification node
is replaced by an encryption of its classification label so that its
contents will remain unknown to the User unless the appropriate
decryption key is obtained. Each decision node is replaced by a
small garbled circuit implementing offset integer comparison (see
Section 3.4). This circuit enables the User to learn one of two keys,
depending on the comparison between the User’s attribute value
(offset by a blinding value) and the decision node’s threshold value.
The revealed key decrypts the next node on the evaluation path.

Input: Branching program T = 〈{P1, . . . , Pk}, L, R〉 (see Sec-
tion 4.1). For i ≤ l, Pi is a decision node 〈ti, αi〉. For i > l, Pi is
a classification node containing label 〈di〉.
Outputs:
(i) Secure branching program T ′

(ii) k random � + �′-bit blinding values b1, . . . , bk

(iii) 2 · k · � random wire keys w0
ij , w

1
ij for 1 ≤ i ≤ k, 1 ≤ j ≤ �

CREATESECUREPROGRAM
1: letQ be a random permutation of the set 1, ..., k withQ[1] = 1
2: Generate random keys κ1, ..., κk to be used for encrypting the
decision nodes.

3: for i = 1 to k do
4: Generate 2 · � random wire keys w0

ij , w
1
ij for 1 ≤ j ≤ �

(to be used for encoding the User’s input into the garbled
threshold comparison circuit).

5: Generate a random � + �′-bit blinding value bi; store bi and
b′i = bi mod 2�.

6: let ĩ = Q[i]
7: if Pi is a classification node 〈di〉 then
8: let Sĩ = {“label”, di}κ

ĩ
, where {y}κ is the encryption

of y under key κ using a semantically secure symmetric-
key encryption scheme. (We assume that all plaintexts
are padded so that the ciphertexts of decision nodes and
classification nodes have the same size.)

9: else if Pi is a decision node 〈ti, αi〉 then
10: Use the subroutine YAO for generating garbled circuits

(see Section 3.3) to generate a secure circuit Ci for the
offset integer comparison functionality (see Section 3.4)
COMPARE(x, b′

ĩ
, ti,L,R) = if x − b′

ĩ
mod 2� <

ti then return L else return R
where L = (Q[L(i)], κQ[L(i)]),

R = (Q[R(i)], κQ[R(i)]))

Use w0
ĩj

, w1
ĩj
(1 ≤ j ≤ �) to encode, respectively, 0 and

1 on the � wires corresponding to input x.
11: let Sĩ = {Ci}κ

ĩ

12: end if
13: end for
14: return T ′ = 〈{S1, ..., Sk}, κ1〉
Algorithm 1: Convert a branching program into a secure branching
program

Because the User should not know which attribute is being
compared to a threshold, the User’s input to the garbled circuit is
blinded by the Server (in phase II, described below) by adding a
random (� + �′)-bit value that the User does not know. Here �′ is
the statistical security parameter, set to 80 bits in our implementa-
tion. The blinding values b1, . . . , bk are generated randomly by the
Server in Phase I. They will be subtracted from the User’s input to
the circuit before it is compared to the threshold.

Phase II: Oblivious attribute selection. In this phase, the User
obtains the blinded attribute values which will be used as inputs to
the COMPARE circuits in the secure decision nodes created in Phase
I. First, the User creates an instance of the additively homomorphic
public-key encryption scheme, and encrypts each attribute in his
attribute vector with the public key (this can take place offline).
The User sends the entire encrypted attribute vector to the Server
along with the public key.
For node i, the blinding value chosen in Phase I is bi, and the at-

tribute to be compared is αi. Thus, the User needs to learn vαi +bi.
The Server cannot compute this value directly without learning vαi



User’s input: Attribute vector v1, . . . , vn with �-bit attribute val-
ues
Server’s input: For each node ti of T ′, αi is the index of the User’s
attribute which is being compared in this node (if ti is not a deci-
sion node, αi is chosen randomly); bi is the random (� + �′)-bit
value generated as part of CREATESECUREPROGRAM.
Outputs for the User:
(i) s1, . . . , sk where ∀i si = vαi + bi mod 2�

(ii) For each i, wire keys wi1, . . . , wi� encoding si = vαi + b′i
mod 2� on the input wires of circuit Ci (see Algorithm 1).
Output for the Server: ⊥
OBLIVIOUSATTRIBUTESELECTION
1: The User generates a public/private key pair of a homomorphic
encryption scheme, and sends the public key to the Server.

2: for i = 1 to n do
3: The User sends E[vi] to the Server.
4: end for
5: for i = 1 to k do
6: Server computes E[vαi + bi] from E[vαi ] and bi using the

homomorphic property of the encryption scheme, and sends
this value to the User.

7: The User decrypts to find vαi + bi and then computes si =
vαi + bi mod 2� = vαi + b′i mod 2�

8: for j = 1 to � do
9: The Server and the User execute OT 1

2 oblivious transfer
protocol.
The User acts as the chooser; his input is si[j], i.e., the
jth bit of si.
The Server acts as the sender; his inputs are wire keys
w0

ij and w1
ij , encoding, respectively, 0 and 1 on the jth

input wire of threshold comparison circuit Ci (see Algo-
rithm 1).

10: end for
11: As the result of � oblivious transfers, the User learns wire

keys wi1, . . . , wi� encoding his input si into the circuit Ci.
Note that the User cannot yet evaluate Ci because he does
not know the key κi under which Ci is encrypted.

12: end for

Algorithm 2: Oblivious attribute selection

(which violates the User’s privacy), but he can computeE[vαi +bi]
since he knows E[vαi ] and the encryption is homomorphic. He
computes this encrypted value and sends it to the User.
The random blinding value bi added by the Server to the en-

crypted �-bit attribute vαi is �′ bits longer than vαi . Therefore, it
statistically hides vαi (and thus does not reveal which attribute the
Server chose) when �′ is sufficiently large (80 bits in our imple-
mentation). Note that 2�+�′ is much smaller than the order of the
group in which plaintext addition is done under encryption.
The User uses his private key to decrypt vαi+bi. By taking vαi+

bi mod 2�, the User obtains si, his �-bit input into the garbled
offset integer comparison circuit.
Next, the User acts as the chooser in � instances of 1-out-of-2

oblivious transfer with the Server to learn the garbled wire keys
corresponding to his input value si. Note that this does not reveal
si to the Server. Now the User has all the wire key values he needs
to evaluate T ′ in phase III.

Phase III: Evaluation of the secure branching program. In the
last phase, the User receives the secure branching program T ′ from
the Server along with κ1, and evaluates it locally by applying Al-
gorithm 3 on inputs (T ′, 1, κ1).

Inputs: Secure program T ′, node index hwith corresponding node
encryption key κh, and, for each i such that 1 ≤ i ≤ k, wire keys
wi1, . . . , wi�.
Output: Classification label c such that c = T (V)

EVALUATESECUREPROGRAM(T ′, h, κh)

1: Use key κh to decrypt node Sh of T ′ and obtain Ch.
2: if Ch = 〈“label”, d〉 then
3: Ch is a classification node.

return label d.
4: else if Ch is a garbled circuit then
5: Evaluate Ch on inputs wh1, . . . , wh�.
6: As the result of evaluation, obtain the pair (h′, κh′) encod-

ing the output wire value.
7: return EVALUATESECUREPROGRAM(h′, κh′).
8: else
9: error “Secure program is not properly formed!”
10: end if

Algorithm 3: Evaluation of secure branching program

Evaluation does not reveal anything to the User except the label
at the end of the evaluation path. At each step, the User applies
one of the comparison circuits Ch to the value sh (encoded as a set
of wire keys—see Section 3.3), but he does not know which of his
attributes is hidden in sh. The User thus learns the index of the next
node and the decryption key, but not the result of the comparison.
The only information leaked by the evaluation procedure is (i)

the total number of nodes in the program T ′, (ii) the number of
nodes that have been evaluated before reaching a classification
node (note that in a full decision tree this number does not depend
on the path taken), and (iii) the classification label d.
If the usage scenario requires the Server to learn the classifica-

tion label, too, the User simply sends d to the Server. If the Server
should learn the classification label and the User should learn noth-
ing, then the Server can replace the labels with ciphertexts encrypt-
ing the labels under the Server’s public key; when the User obtains
a ciphertext at the end of evaluation, he sends it to the Server.
We emphasize that the User cannot simply re-run the program

evaluation algorithm of Phase III on the same secure program T ′

and a different attribute vector, thus learning more about the origi-
nal branching program. After learning the wire keys corresponding
to his (blinded) attributes during Phase II, the User can evaluate
only a single path in the branching program—that corresponding
to the attribute vector he used as his input into the protocol. There
is no way for the User to learn the random wire keys encoding other
possible inputs to the program.
In order to evaluate T on a different attribute vector, the User

must re-run the entire protocol starting from Phase I. He will then
obtain a different secure program T ′′ and a different set of wire
keys. Our protocol maintains the invariant that, for every secure
branching program, there is only one path that can be evaluated by
the User, and this path appears random to the User.

4.4 Security properties
The protocol presented in Section 4.3 is secure in the semi-honest

model, i.e., under the assumption that participants faithfully follow
the protocol, but may attempt to learn extra information from the
protocol transcript. (The proof is standard, and omitted to save
space.) Even if the User is malicious rather than semi-honest, he
cannot learn anything about the diagnostic program except the final
diagnostic label, since the underlying oblivious transfer protocol is
secure against malicious choosers.



The protocol of Section 4.3 can be transformed, at a constant
cost, to achieve security in the malicious model. We only sketch
the transformation here due to lack of space. Both parties must
commit to their respective protocol inputs, including the Server’s
branching program and blinding values, and the User’s attribute
values. Each instance of oblivious transfer (OT) must be replaced
with an instance of committed oblivious transfer, during which the
parties prove in zero-knowledge that their inputs into OT are con-
sistent with their previous commitments. Similarly, each instance
of Yao’s protocol must be replaced with an instance of secure two-
party computation on committed inputs, during which the Server
proves in zero-knowledge that the offset integer comparison cir-
cuits have been formed correctly, and both parties prove that their
inputs are consistent with their commitments. The homomorphic
encryption scheme must be verifiable, i.e., it must enable the en-
cryptor to prove that the plaintext is consistent with a previous
commitment. Finally, the commitment scheme must enable effi-
cient proofs of certain relationships between committed values.
The cryptographic tools which satisfy the above requirements,

i.e., (1) homomorphic, verifiable encryption scheme, (2) commit-
ment scheme, (3) committed oblivious transfer protocol, (4) secure
two-party computation protocol on committed inputs, and (5) effi-
cient zero-knowledge proof systems for the required relationships
between protocol components can be found in [20].
Even security in the malicious model does not prevent a mali-

cious User from claiming that his attribute vector has changed and
repeatedly re-running the protocol on different committed inputs
in an attempt to learn the entire diagnostic program. To prevent
this, the Server can rate-limit the number of protocol invocations
with each User. This is easy to enforce by refusing to accept new
commitments from the User until a specified period expires.

4.5 Efficiency and comparison with generic
techniques

In the secure branching program created by Algorithm 1, each
of the decision nodes of the original program is replaced by a gar-
bled Yao circuit for comparing two (offset) �-bit integers. Each
such circuit requires log � gates, for a total of k · log � gates (this
is a conservative estimate, since some of the nodes are classifica-
tion nodes). Note that the size of the circuit is independent of the
number of the User’s attributes n. Algorithm 2 requires k · � OT 1

2

oblivious transfers to transfer the wire keys corresponding to the
User’s (blinded) inputs into each of the k nodes.
An alternative to using our protocol from Section 4.3 is to use

generic techniques that enable secure computation of any two-party
functionality, represented either as a boolean circuit [23, 40] or a
binary decision diagram [14] (the latter may be a better choice for
branching diagnostic programs).
A naı̈ve way to implement the secure evaluation of binary

branching programs using generic techniques would be to have
the Server take his specific branching program, transform it into
an equivalent secure program using, say, the standard garbled
circuit techniques (see Section 3.3), and have the User evaluate the
garbled circuit on his attribute vector.
This does not satisfy our security requirements. First of all, the

topology of the program is revealed to the User. In generic se-
cure multi-party computation (SMC), it is usually assumed that the
function to be computed is known to both parties. Yao’s garbled
circuit technique works even if the circuit evaluator does not know
the truth tables associated with the individual gates, but it reveals
the topology of the circuit being evaluated. By contrast, our pro-
tocol only reveals the length of the evaluation path and the total
number of nodes; it leaks no other information about the rest of the

branching program. Even worse, with the naı̈ve approach the User
learns on which of his attributes the program was evaluated, thus
violating one of our core security requirements (see Section 4.2).
To ensure obliviousness of the User’s input selection, the SMC

functionality must be defined so that it takes any branching program
of a given size (as opposed to the specific Server’s program) and
securely applies it to any attribute vector of a given length.
We have attempted to implement such a functionality using the

Fairplay compiler [24], which converts any two-party functional-
ity into an equivalent garbled circuit. Unfortunately, the Fairplay
compiler is memory-bound, and in our experiments it was unable
to compile functionalities that would allow us to apply branching
programs of realistic size to realistic attribute vectors. On a ma-
chine with 4 Gigabytes of RAM, the compiler runs out of memory
when attempting to compile the functionality that applies a 63-node
branching program to a 400-attribute vector.
Table 1 gives comparative measurements of online computation

and communication for a few sample configurations. Our experi-
mental setup, along with the detailed performance analysis of our
protocol, can be found in Section 6.
Some of the negative aspects of Fairplay, such as running out of

memory even on relatively small configurations, may be due to the
particular compiler implementation rather than the inherent flaws
of the generic approach. Nevertheless, our protocol described in
Section 4.3 provides a superior solution for the specific task of se-
cure branching program evaluation.

4.6 Achieving complete privacy
The protocol of Section 4.3 reveals the total number of nodes in

the branching program and the length of the evaluation path corre-
sponding to the User’s attribute vector. This information appears
harmless in practice, but, if necessary, it can be hidden, provided
that there exist upper bounds B on the number of nodes and P on
the length of the longest evaluation path.
To hide the size of the branching program, the Server can create

B − k random ciphertexts (which will never be decrypted by the
User), and mix them randomly with the real encrypted nodes of the
secure program T ′. Semantic security of the encryption scheme
used to encrypt individual nodes guarantees that the User cannot
tell the difference between an encryption of a real node that he did
not reach in his evaluation, and a random ciphertext of the same
size. When padded in this way, secure versions of all branching
programs will contain exactly B ciphertexts.
To hide the length of evaluation paths, first transform the branch-

ing program into a decision tree, so that each node has a fixed depth.
Then transform it into a full tree of depth P by replacing classifica-
tion nodes at depth p < P with full trees of depth (P − p + 1), in
which every leaf contains the original classification. In the result-
ing tree, every evaluation path has length P .

5. REMOTE SOFTWARE DIAGNOSTICS
In this section, we give a brief introduction to the problem of re-

mote software fault diagnostics, and then use our protocol of Sec-
tion 4 to implement a privacy-preserving version of Clarify, a prac-
tical system for software fault diagnosis [17].
Microsoft error reporting is an example of a remote software di-

agnosis tool [28]. A Microsoft error report has two purposes. The
first purpose is to gather extensive information about a software
failure to enable Microsoft engineers to fix the software problem.
We emphasize that we do not focus on this problem, since there ex-
ist many standard techniques, both privacy-preserving and not, for
creating decision trees (e.g., see [17] and Section 2).
The second purpose is to improve the user’s experience by pro-



Server User
Nodes Attrib. Computation Communication Computation Communication

15 100 67 vs. 2 sec 1,292 vs. 263 KB 76 vs. 3 sec 528 vs. 98 KB
63 100 72 vs. 7 sec 1,799 vs. 1121 KB 79 vs. 14 sec 528 vs. 351 KB
15 1000 605 vs. 2 sec 11,388 vs. 263 KB 706 vs. 4 sec 5,277 vs. 255 KB
63 1000 X vs. 7 sec X vs. 1121 KB X vs. 12 sec X vs. 508 KB

Cursive - Fairplay, Bold - our protocol, X - failed to compile

Table 1: Comparison of protocols for the evaluation of branching programs

viding a message describing the user’s problem and how the user
can avoid the problem in the future. Our case study addresses the
second purpose, where a server provides feedback to the user about
the user’s problem. Windows Vista includes a prominent item on
the control panel called “Problem reports and solutions” [27] that
allows users to get the latest information about a particular software
problem from Microsoft’s web site. The Ubuntu Linux distribution
also contains new features to generate more information about soft-
ware failures to help users [39].
Microsoft’s privacy statement about the information it collects

for software problem diagnosis [26] acknowledges that problem re-
ports can compromise users’ privacy. Problem reports contain the
contents of memory for the program that failed, and this memory
“might include your name, part of a document you were working
on or data that you recently submitted to a website.” The policy
says that users concerned about the release of personal or confiden-
tial information should not send problem reports. Of course, users
who do not send problem reports cannot benefit from remote fault
diagnostics. Corporate users in particular have expressed concern
that remote diagnostics could reveal their intellectual property [32].
Ubuntu’s documentation also acknowledges security and privacy
risks associated with data-rich fault reports.
The protocol presented in this paper enables the user to obtain a

support message in a privacy-preserving fashion. The user does not
reveal anything to the software manufacturer about his or her local
data, and the software manufacturer does not reveal to the user how
the user’s local data was mapped to a diagnostic message.

Privacy of diagnostic programs. It may appear that the soft-
ware manufacturer should simply send the diagnostic program to
the user or, better yet, integrate it directly into the supported ap-
plication. Many software manufacturers, however, view their diag-
nostic programs as valuable intellectual property. They state this
explicitly in the legal documents that accompany the diagnostic
software [13] and sue competitors who obtain access to their di-
agnostic programs [33]. Updating widely deployed software with
new support messages and diagnostic tools is not always feasible,
either, since many users simply don’t install patches.
Moreover, diagnostic programs can reveal vulnerabilities in de-

ployed software. For example, a single message from Microsoft’s
Dr. Watson diagnostic tool was sufficient to reveal to any user who
experienced a particular fault an exploitable buffer overflow [25]
(had the entire Dr. Watson diagnostic tree been shipped to every
Windows user instead of being evaluated on Microsoft’s servers,
even users who did not experience the fault could discover the
vulnerability by analyzing the diagnostic tree). In the diagnostic
trees produced by the Clarify toolkit for gzprintf, which is one
of our benchmarks, the inner nodes of the diagnostic tree directly
point to the function that contains a security vulnerability. With
a lively, semi-legal market in information about software vulnera-
bilities [37], software manufacturers have a strong disincentive to
completely reveal all known faults and bugs in their applications.
We emphasize that we do not promote “security by obscurity.”

Software manufacturers should patch the bugs and vulnerabilities
in their programs as soon as practicable. From a purely pragmatic
perspective, however, they should not be forced to choose between
not providing diagnostic support, or else revealing every internal
detail of their applications and diagnostic tools. In reality, when
faced with such a stark choice, many will decide to not provide
support at all, resulting in a poorer experience for the users who are
not willing to disclose their own local data.

Runtime data collection and fault diagnosis. Typically, the run-
time environment records some abstraction of the program’s behav-
ior. Different abstractions have different cost and accuracy trade-
offs (e.g., see [9, 17]). For instance, one abstraction counts how
many times each function in the program was called, another counts
function call sites that satisfy a certain predicate (e.g., equal to zero)
on the function’s return value, and so on.
For the purposes of this paper, we abstract from the details of the

program behavior “dumps” generated by the runtime environment,
and refer to individual data items simply as attributes. We assume
that the vector of attributes has a fixed maximum size, which can
be quite large—for example, a vector of function callsite counters
may include dozens of thousands of attributes. Note that the online
computational complexity of the User’s algorithm in the protocol
of Section 4 does not depend on the number of attributes.
Diagnostic programs evaluate the data dump produced by the

runtime environment and diagnose the problem. In this paper, we
use diagnostic programs generated by the Clarify system [17]. We
emphasize that Clarify is a “black-box” diagnostic system, and thus
not simply an alternative to debugging. Commercial applications
are often distributed as packed binaries, compiled without symbols
and not accompanied by source code. Investigation of a fault in
such a binary by manual debugging is a laborious process, whereas
even an unsophisticated user can benefit from fast diagnostics pro-
vided by systems like Clarify.
In general, the diagnostic program can be manually created by

human experts, or constructed automatically by training a machine
learning classifier on previously labeled program behaviors (sup-
plied, for example, by beta testers who are not concerned about
privacy of their data). Clarify takes the latter approach. If nec-
essary, standard methods for privacy-preserving decision tree con-
struction can be used to protect data suppliers’ privacy [1, 22]. The
number of users whose data are used in constructing the diagnostic
program is typically orders of magnitude lower than the number of
users who apply the resulting program to their data. Therefore, we
focus on privacy-preserving evaluation of diagnostic programs.
The diagnostic program usually has the form of a classification

tree or a branching program. In each internal node, one of the at-
tributes is compared with some threshold value. Leaves contain di-
agnostic labels. For example, Figure 1 shows a diagnostic branch-
ing program created by Clarify using function counting for the mp3
player mpg321. The application itself does not give any consistent
error messages for any of these error cases. The model has four di-
agnostic labels, including normal execution (no error), file format



Figure 1: Diagnostic branching program for the mpg321
benchmark. Dotted lines are taken when the attribute (nor-
malized count of the feature value) is less than or equal to the
threshold listed in the box, while the solid line is taken when it
is greater than the threshold. The threshold is determined au-
tomatically for each benchmark by the decision tree algorithm,
and can be different for each node in the tree. Clear boxes are
decision nodes. Shaded boxes are classification nodes.

error (trying to play a wav file as if it were an mp3), corrupted tag
(mp3 metadata, e.g., artist name is stored in ID3 format tags), and
corrupted mp3 frame data. The diagnostic branching program dis-
tinguishes between these three failure modes and normal execution.
At the root, the function mad layer III provides almost

perfect discriminative information for the wav error class (trying
to play a wav as if it were an mp3): the mad layer III routine
is part of the libmad library and is called when the audio frame
decoder runs. Since the wav format is among the formats not
supported by mpg321, it will not successfully decode any audio
frames, and the libmad library will never call mad layer III.
The id3 tag delete routine differentiates between the

corrupted tag and and other classes. The ID3 tag parser in the
libid3tag library dynamically allocates memory to represent
tags and frees them with id3 tag delete. If tag parsing fails,
the memory for a tag is not allocated. Since no tag parsing suc-
ceeds in the corrupted frames case, id3 tag delete is never
called to free the tag memory, making its absence discriminative
for that class. The libmad audio library’s default error handler
error default is used if the application does not specify one.
mpg321 does not specify its own error handler, so the presence
of the function indicates corrupted audio frames, and its absence
indicates corrupted id3 tags. Finally, III freqinver, which
performs subband frequency inversion for odd sample lines, is
called very frequently as part of normal decoding of audio frame
data. When there are corrupted frames, this function is called less
frequently, and the decision tree algorithm finds an appropriate
threshold value to separate the normal from the corrupted case.
Table 2 shows the parameters of diagnostic programs for several

benchmark applications.

6. PERFORMANCE
We evaluated our prototype implementation using PCs with an

Intel Pentium D 3 GHz processor, 2 GB of RAM, and 2MB cache.
This is a realistic approximation of what the User might use, but we
expect that the Server would maintain a more powerful dedicated
server to process remote diagnostics requests.
In our analysis of scaling behavior, we created artificial data sets

with varying numbers of nodes and attributes, and measured the
offline and online time separately. Offline time includes all cal-
culations that can be performed independently of the other party,

App. Attributes Nodes # Errs Accuracy
gcc 2,920 37 5 89.2%
latex 395 1,107 81 85.1%
mpg321 128 9 4 87.5%
nfs 292 17 5 93.3%
iptables 70 9 5 98.5%

Table 2: For each benchmark, we give the length of the at-
tribute vector, number of nodes in the diagnostic tree, number
of errors distinguished by the decision tree, and the tree’s clas-
sification accuracy.

Server User
Application Time Bytes Time Bytes
foxpro 1s 119 KB 2s 78 KB
(7 nodes, 224 attrs)

iptables 2s 155 KB 2s 61 KB
(9 nodes, 70 attrs)

mpg321 2s 155 KB 2s 71 KB
(9 nodes, 128 attrs)

nfs 2s 298 KB 4s 142 KB
(17 nodes, 292 attrs)

gzprintf 3s 506 KB 5s 133 KB
(23 nodes, 60 attrs)

gcc 5s 656 KB 7s 707 KB
(37 nodes, 2920 attrs)

latex 113s 19,793 KB 189s 5,908 KB
(1107 nodes, 395 attrs)

Table 3: Privacy-preserving evaluation of Clarify diagnostic
programs: computation and communication costs.

while online time includes the calculations that depend on the in-
formation sent by the other party earlier in the protocol. Online
time is the more important metric, since it dictates how long the
two parties must maintain a connection. Offline calculations can be
performed during idle times when the CPU is in low demand.
We first analyze the scaling behavior of the Server algorithm,

as presented in Figures 2 and 3. Here we see that the Server’s
computation and bandwidth requirements are independent of the
number of attributes, which is an attractive property in the software
diagnostic scenario where the attribute vector can be quite large and
contain a lot of information which is not relevant for all diagnostic
programs. Furthermore, the Server’s algorithm scales linearly with
the number of nodes in the branching program, which is as good as
one can realistically hope to achieve.
Scaling behavior of the User’s algorithm is shown in Figures 4

and 5. As is the case with the Server, the User’s online computation
time depends linearly on the size of the branching program, but is
independent of the number of attributes in the attribute vector. Un-
like the Server, the User’s offline computation time and bandwidth
requirements do depend on the number of attributes. This is be-
cause the User must encrypt the entire attribute vector offline, and
then transmit it as part of the protocol.
We also evaluate our prototype implementation on several real

applications, as shown in Table 3. These benchmarks have been
chosen because they are common, heavily-used programs that ei-
ther contain security vulnerabilities which would be revealed by
the diagnostic program (e.g., gzprintf), or report misleading er-
ror messages (or none at all) for non-exotic error conditions, and
therefore would benefit the most from remote diagnosis. As our di-
agnostic programs, we used classification trees generated by Clar-
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Figure 2: Server algorithm: scaling with the number of at-
tributes.
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Figure 3: Server algorithm: scaling with the size of the diag-
nostic program.
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Figure 4: User algorithm: scaling with the number of at-
tributes.

User's bandwidth and computation time

 (1000-attribute User vector)

0

20

40

60

80

100

120

7 15 31 63 127 255 511

Number of nodes in diagnostic program

Seconds

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

MBOnline Time Offline Time Bandwidth

Figure 5: User algorithm: scaling with the size of the diagnos-
tic program.

ify [9, 17], and as attribute vectors 32-bit invocation counters for
each function of the application.
For all applications, the computation and communication cost

of executing our privacy-preserving protocol is acceptable in many
practical scenarios.

7. CONCLUSIONS
We presented a practical, provably secure protocol which enables

a User to evaluate the Server’s branching program on the User’s lo-
cal data without revealing any information except the diagnostic
label. We applied our prototype implementation to several real-
istic benchmarks, using diagnostic decision trees produced by the
Clarify system as our branching programs, and demonstrated that
it performs well in many practical scenarios.
An interesting topic of future research is applying the techniques

for oblivious evaluation of branching programs developed in this
paper to other problems in privacy-preserving computation.
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