
Ciphertext-Policy Attribute-Based Encryption

John Bethencourt
Carnegie Mellon University
bethenco@cs.cmu.edu

Amit Sahai
UCLA

sahai@cs.ucla.edu

Brent Waters
SRI International

bwaters@csl.sri.com

Abstract

In several distributed systems a user should only be able
to access data if a user posses a certain set of creden-
tials or attributes. Currently, the only method for enforcing
such policies is to employ a trusted server to store the data
and mediate access control. However, if any server stor-
ing the data is compromised, then the confidentiality of the
data will be compromised. In this paper we present a sys-
tem for realizing complex access control on encrypted data
that we call Ciphertext-Policy Attribute-Based Encryption.
By using our techniques encrypted data can be kept con-
fidential even if the storage server is untrusted; moreover,
our methods are secure against collusion attacks. Previ-
ous Attribute-Based Encryption systems used attributes to
describe the encrypted data and built policies into user’s
keys; while in our system attributes are used to describe a
user’s credentials, and a party encrypting data determines
a policy for who can decrypt. Thus, our methods are con-
ceptually closer to traditional access control methods such
as Role-Based Access Control (RBAC). In addition, we pro-
vide an implementation of our system and give performance
measurements.

1 Introduction

In many situations, when a user encrypts sensitive data, it
is imperative that she establish a specific access control pol-
icy on who can decrypt this data. For example, suppose that
the FBI public corruption offices in Knoxville and San Fran-
cisco are investigating an allegation of bribery involving a
San Francisco lobbyist and a Tennessee congressman. The
head FBI agent may want to encrypt a sensitive memo so
that only personnel that have certain credentials or attributes
can access it. For instance, the head agent may specify the
following access structure for accessing this information:
((“PUBLIC CORRUPTIONOFFICE” AND (“K NOXVILLE ”
OR “SAN FRANCISCO”)) OR (MANAGEMENT-LEVEL >
5) OR “N AME : CHARLIE EPPES”).
By this, the head agent could mean that the memo should

only be seen by agents who work at the public corruption of-
fices at Knoxville or San Francisco, FBI officials very high
up in the management chain, and a consultant named Char-
lie Eppes.

As illustrated by this example, it can be crucial that the
person in possession of the secret data be able to choose an
access policy based on specific knowledge of the underly-
ing data. Furthermore, this person may not know the exact
identities of all other people who should be able to access
the data, but rather she may only have a way to describe
them in terms of descriptive attributes or credentials.

Traditionally, this type of expressive access control is
enforced by employing a trusted server to store data lo-
cally. The server is entrusted as a reference monitor that
checks that a user presents proper certification before allow-
ing him to access records or files. However, services are in-
creasingly storing data in a distributed fashion across many
servers. Replicating data across several locations has ad-
vantages in both performance and reliability. The drawback
of this trend is that it is increasingly difficult to guarantee
the security of data using traditional methods; when data is
stored at several locations, the chances that one of them has
been compromised increases dramatically. For these rea-
sons we would like to require that sensitive data is stored
in an encrypted form so that it will remain private even if a
server is compromised.

Most existing public key encryption methods allow a
party to encrypt data to a particular user, but are unable to
efficiently handle more expressive types of encrypted access
control such as the example illustrated above.

Our contribution. In this work, we provide the first con-
struction of aciphertext-policy attribute-based encryption
(CP-ABE)to address this problem, and give the first con-
struction of such a scheme. In our system, a user’s pri-
vate key will be associated with an arbitrary number of at-
tributes expressed as strings. On the other hand, when a
party encrypts a message in our system, they specify an as-
sociated access structure over attributes. A user will only
be able to decrypt a ciphertext if that user’s attributes pass
through the ciphertext’s access structure. At a mathemati-

cal level, access structures in our system are described by a
monotonic “access tree”, where nodes of the access struc-
ture are composed of threshold gates and the leaves describe
attributes. We note thatAND gates can be constructed asn-
of-n threshold gates andOR gates as1-of-n threshold gates.
Furthermore, we can handle more complex access controls
such as numeric ranges by converting them to small access
trees (see discussion in the implementation section for more
details).

Our techniques. At a high level, our work is similar to the
recent work of Sahai and Waters [24] and Goyal et al. [15]
on key-policy attribute based encryption (KP-ABE), how-
ever we require substantially new techniques. In key-policy
attribute based encryption, ciphertexts are associated with
sets of descriptive attributes, and users’ keys are associated
with policies (the reverse of our situation).We stress that
in key-policy ABE, the encryptor exerts no control over who
has access to the data she encrypts, except by her choice
of descriptive attributes for the data.Rather, she must
trust that the key-issuer issues the appropriate keys to grant
or deny access to the appropriate users. In other words,
in [24, 15], the “intelligence” is assumed to be with the key
issuer, and not the encryptor. In our setting, the encryptor
must be able to intelligently decide who should or should
not have access to the data that she encrypts. As such, the
techniques of [24, 15] do not apply to our setting, and we
must develop new techniques.

At a technical level, the main objective that we must at-
tain is collusion-resistance: If multiple users collude, they
should only be able to decrypt a ciphertext if at least one
of the users could decrypt it on their own. In particular,
referring back to the example from the beginning of this In-
troduction, suppose that an FBI agent that works in the ter-
rorism office in San Francisco colludes with a friend who
works in the public corruption office in New York. We do
not want these colluders to be able to decrypt the secret
memo by combining their attributes. This type of security
is thesine qua nonof access control in our setting.

In the work of [24, 15], collusion resistance is insured
by using a secret-sharing scheme and embedding indepen-
dently chosen secret shares into each private key. Because
of the independence of the randomness used in each in-
vocation of the secret sharing scheme, collusion-resistance
follows. In our scenario, users’ private keys are associated
with setsof attributes instead of access structures over them,
and so secret sharing schemes do not apply.

Instead, we devise a novel private key randomiza-
tion technique that uses a new two-level random masking
methodology. This methodology makes use of groups with
efficiently computable bilinear maps, and it is the key to our
security proof, which we give in the generic bilinear group
model [6, 28].

Finally, we provide an implementation of our system to
show that our system performs well in practice. We provide
a description of both our API and the structure of our imple-
mentation. In addition, we provide several techniques for
optimizing decryption performance and measure our per-
formance features experimentally.

Organization. The remainder of our paper is structured
as follows. In Section 2 we discuss related work. In Sec-
tion 3 we our definitions and give background on groups
with efficiently computable bilinear maps. We then give our
construction in Section 4. We then present our implemen-
tation and performance measurements in Section 5. Finally,
we conclude in Section 6.

2 Related Work

Sahai and Waters [24] introduced attribute-based encryp-
tion (ABE) as a new means for encrypted access control.
In an attribute-based encryption system ciphertexts are not
necessarily encrypted to one particular user as in traditional
public key cryptography. Instead both users’ private keys
and ciphertexts will be associated with a set of attributes or
a policy over attributes. A user is able to decrypt a cipher-
text if there is a “match” between his private key and the
ciphertext. In their original system Sahai and Waters pre-
sented a Threshold ABE system in which ciphertexts were
labeled with a set of attributesS and a user’s private key was
associated with both a threshold parameterk and another set
of attributesS′. In order for a user to decrypt a ciphertext
at leastk attributes must overlap between the ciphertext and
his private keys. One of the primary original motivations
for this was to design an error-tolerant (or Fuzzy) identity-
based encryption [27, 7, 12] scheme that could use biomet-
ric identities.

The primary drawback of the Sahai-Waters [24] thresh-
old ABE system is that the threshold semantics are not very
expressive and therefore are limiting for designing more
general systems. Goyal et al. introduced the idea of a
more generalkey-policyattribute-based encryption system.
In their construction a ciphertext is associated with a set of
attributes and a user’s key can be associated with any mono-
tonic tree-access structure.1 The construction of Goyal et
al. can be viewed as an extension of the Sahai-Waters tech-
niques where instead of embedding a Shamir [26] secret
sharing scheme in the private key, the authority embeds a
more general secret sharing scheme for monotonic access
trees. Goyal et. al. also suggested the possibility of a
ciphertext-policy ABE scheme, but did not offer any con-
structions.

1Goyal et al. show in addition how to construct a key-policy ABE
scheme for any linear secret sharing scheme.

Pirretti et al. [23] gave an implementation of the thresh-
old ABE encryption system, demonstrated different ap-
plications of attribute-based encryption schemes and ad-
dressed several practical notions such as key-revocation. In
recent work, Chase [11] gave a construction for a multi-
authority attribute-based encryption system, where each au-
thority would administer a different domain of attributes.
The primary challenge in creating multi-authority ABE is
to prevent collusion attacks between users that obtain key
components from different authorities. While the Chase
system used the threshold ABE system as its underly-
ing ABE system at each authority, the problem of multi-
authority ABE is in general orthogonal to finding more ex-
pressive ABE systems.

In addition, there is a long history of access control for
data that is mediated by a server. See for example, [18,
14, 30, 20, 16, 22] and the references therein. We focus on
encrypted access control, where data is protected even if the
server storing the data is compromised.

Collusion Resistance and Attribute-Based Encryption
The defining property of Attribute-Based Encryption sys-
tems are their resistance to collusion attacks. This prop-
erty is critical for building cryptographic access control sys-
tems; otherwise, it is impossible to guarantee that a sys-
tem will exhibit the desired security properties as there will
exist devastating attacks from an attacker that manages to
get a hold of a few private keys. While we might consider
ABE systems with different flavors of expressibility, prior
work [24, 15] made it clear that collusion resistance is a
required property of any ABE system.

Before attribute-based encryption was introduced there
were other systems that attempted to address access con-
trol of encrypted data [29, 8] by using secret sharing
schemes [17, 9, 26, 5, 3] combined with identity-based
encryption; however, these schemes did not address resis-
tance to collusion attacks. Recently, Kapadia, Tsang, and
Smith [19] gave a cryptographic access control scheme that
employed proxy servers. Their work explored new methods
for employing proxy servers to hide policies and use non-
monontonic access control for small universes of attributes.
We note that although they called this scheme a form of
CP-ABE, the scheme does not have the property of collu-
sion resistance. As such, we believe that their work should
not be considered in the class of attribute-based encryption
systems due to its lack of security against collusion attacks.

3 Background

We first give formal definitions for the security of cipher-
text policy attribute based encryption (CP-ABE). Next, we
give background information on bilinear maps. Like the
work of Goyal et al. [15] we define an access structure and

use it in our security definitions. However, in these defi-
nitions the attributes will describe the users and the access
structures will be used to label different sets of encrypted
data.

3.1 Definitions

Definition 1 (Access Structure [1]) Let {P1, P2, . . . , Pn}
be a set of parties. A collectionA ⊆ 2{P1,P2,...,Pn} is mono-
tone if∀B,C : if B ∈ A andB ⊆ C thenC ∈ A. Anaccess
structure(respectively, monotone access structure) is a col-
lection (respectively, monotone collection)A of non-empty
subsets of{P1, P2, . . . , Pn}, i.e.,A ⊆ 2{P1,P2,...,Pn}\{∅}.
The sets inA are called theauthorized sets, and the sets not
in A are called theunauthorized sets.

In our context, the role of the parties is taken by the
attributes. Thus, the access structureA will contain the
authorized sets of attributes. We restrict our attention to
monotone access structures. However, it is also possible
to (inefficiently) realize general access structures using our
techniques by having the not of an attribute as a separate
attribute altogether. Thus, the number of attributes in the
system will be doubled. From now on, unless stated oth-
erwise, by an access structure we mean a monotone access
structure.

An ciphertext-policy attribute based encryption scheme
consists of four fundamental algorithms: Setup, Encrypt,
KeyGen, and Decrypt. In addition, we allow for the option
of a fifth algorithm Delegate.

Setup. The setup algorithm takes no input other than the
implicit security parameter. It outputs the public parameters
PK and a master key MK.

Encrypt(PK ,M,A). The encryption algorithm takes as
input the public parameters PK, a messageM , and an ac-
cess structureA over the universe of attributes. The algo-
rithm will encryptM and produce a ciphertext CT such that
only a user that possesses a set of attributes that satisfies the
access structure will be able to decrypt the message. We
will assume that the ciphertext implicitly containsA.

Key Generation(MK , S). The key generation algorithm
takes as input the master key MK and a set of attributesS
that describe the key. It outputs a private key SK.

Decrypt(PK,CT,SK). The decryption algorithm takes
as input the public parameters PK, a ciphertext CT, which
contains an access policyA, and a private key SK, which
is a private key for a setS of attributes. If the setS of at-
tributes satisfies the access structureA then the algorithm
will decrypt the ciphertext and return a messageM .

Delegate(SK, S̃). The delegate algorithm takes as input a
secret key SK for some set of attributesS and a set̃S ⊆ S.
It output a secret keỹSK for the set of attributes̃S.

We now describe a security model for ciphertext-policy
ABE schemes. Like identity-based encryption schemes [27,
7, 12] the security model allows the adversary to query for
any private keys that cannot be used to decrypt the chal-
lenge ciphertext. In CP-ABE the ciphertexts are identified
with access structures and the private keys with attributes.
It follows that in our security definition the adversary will
choose to be challenged on an encryption to an access struc-
tureA∗ and can ask for any private keyS such thatS does
not satisfyS∗. We now give the formal security game.

Security Model for CP-ABE

Setup. The challenger runs the Setup algorithm and gives
the public parameters, PK to the adversary.

Phase 1. The adversary makes repeated private keys cor-
responding to sets of attributesS1, . . . , Sq1 .

Challenge. The adversary submits two equal length mes-
sagesM0 andM1. In addition the adversary gives a
challenge access structureA∗ such that none of the sets
S1, . . . , Sq1 from Phase 1 satisfy the access structure.
The challenger flips a random coinb, and encryptsMb

underA∗. The ciphertext CT∗ is given to the adver-
sary.

Phase 2. Phase 1 is repeated with the restriction that none
of sets of attributesSq1+1, . . . , Sq satisfy the access
structure corresponding to the challenge.

Guess. The adversary outputs a guessb′ of b.

The advantage of an adversaryA in this game is defined
asPr[b′ = b] − 1

2 . We note that the model can easily be
extended to handle chosen-ciphertext attacks by allowing
for decryption queries in Phase 1 and Phase 2.

Definition 2 An ciphertext-policy attribute-based encryp-
tion scheme is secure if all polynomial time adversaries
have at most a negligible advantage in the above game.

3.2 Bilinear Maps

We present a few facts related to groups with efficiently
computable bilinear maps.

Let G0 and G1 be two multiplicative cyclic groups of
prime orderp. Letg be a generator ofG0 ande be a bilinear
map, e : G0 × G0 → G1. The bilinear mape has the
following properties:

1. Bilinearity: for allu, v ∈ G0 anda, b ∈ Zp, we have
e(ua, vb) = e(u, v)ab.

2. Non-degeneracy:e(g, g) 6= 1.

We say thatG0 is a bilinear group if the group operation
in G0 and the bilinear mape : G0 × G0 → G1 are both
efficiently computable. Notice that the mape is symmetric
sincee(ga, gb) = e(g, g)ab = e(gb, ga).

4 Our Construction

In this section we provide the construction of our sys-
tem. We begin by describing the model of access trees and
attributes for respectively describing ciphertexts and private
keys. Next, we give the description of our scheme. Fi-
nally, we follow with a discussion of security, efficiency,
and key revocation. We provide our proof of security in
Appendix A.

4.1 Our Model

In our construction private keys will be identified with a
setS of descriptive attributes. A party that wishes to encrypt
a message will specify through an access tree structure a
policy that private keys must satisfy in order to decrypt.

Each interior node of the tree is a threshold gate and the
leaves are associated with attributes. (We note that this set-
ting is very expressive. For example, we can represent a
tree with “AND” and “OR” gates by using respectively 2 of
2 and 1 of 2 threshold gates.) A user will be able to decrypt
a ciphertext with a given key if and only if there is an as-
signment of attributes from the private key to nodes of the
tree such that the tree is satisfied. We use the same notation
as [15] to describe the access trees, even though in our case
the attributes are used to identify the keys (as opposed to the
data).

Access treeT . Let T be a tree representing an access
structure. Each non-leaf node of the tree represents a thresh-
old gate, described by its children and a threshold value. If
numx is the number of children of a nodex andkx is its
threshold value, then0 < kx ≤ numx. Whenkx = 1, the
threshold gate is an OR gate and whenkx = numx, it is an
AND gate. Each leaf nodex of the tree is described by an
attribute and a threshold valuekx = 1.

To facilitate working with the access trees, we define a
few functions. We denote the parent of the nodex in the
tree byparent(x). The functionatt(x) is defined only ifx
is a leaf node and denotes the attribute associated with the
leaf nodex in the tree. The access treeT also defines an or-
dering between the children of every node, that is, the chil-
dren of a node are numbered from 1 tonum. The function
index(x) returns such a number associated with the nodex.

Where the index values are uniquely assigned to nodes in
the access structure for a given key in an arbitrary manner.

Satisfying an access tree. Let T be an access tree with
root r. Denote byTx the subtree ofT rooted at the nodex.
HenceT is the same asTr. If a set of attributesγ satisfies
the access treeTx, we denote it asTx(γ) = 1. We compute
Tx(γ) recursively as follows. Ifx is a non-leaf node, eval-
uateTx′(γ) for all childrenx′ of nodex. Tx(γ) returns 1 if
and only if at leastkx children return 1. Ifx is a leaf node,
thenTx(γ) returns 1 if and only ifatt(x) ∈ γ.

4.2 Our Construction

Let G0 be a bilinear group of prime orderp, and letg
be a generator ofG0. In addition, lete : G0 × G0 → G1

denote the bilinear map. A security parameter,κ, will de-
termine the size of the groups. We also define the Lagrange
coefficient∆i,S for i ∈ Zp and a set,S, of elements in
Zp: ∆i,S(x) =

∏
j∈S,j 6=i

x−j
i−j . We will additionally em-

ploy a hash functionH : {0, 1}∗ → G0 that we will model
as a random oracle. The function will map any attribute de-
scribed as a binary string to a random group element. Our
construction follows.

Setup. The setup algorithm will choose a bilinear group
G0 of prime orderp with generatorg. Next it will choose
two random exponentsα, β ∈ Zp. The public key is pub-
lished as:

PK = G0, g, h = gβ , f = g1/β , e(g, g)α

and the master key MK is(β, gα). (Note thatf is used only
for delegation.)

Encrypt(PK ,M, T). The encryption algorithm encrypts
a messageM under the tree access structureT . The algo-
rithm first chooses a polynomialqx for each nodex (includ-
ing the leaves) in the treeT . These polynomials are chosen
in the following way in a top-down manner, starting from
the root nodeR. For each nodex in the tree, set the degree
dx of the polynomialqx to be one less than the threshold
valuekx of that node, that is,dx = kx − 1.

Starting with the root nodeR the algorithm chooses a
randoms ∈ Zp and setsqR(0) = s. Then, it chooses
dR other points of the polynomialqR randomly to de-
fine it completely. For any other nodex, it setsqx(0) =
qparent(x)(index(x)) and choosesdx other points randomly
to completely defineqx.

Let, Y be the set of leaf nodes inT . The ciphertext is
then constructed by giving the tree access structureT and

computing

CT =
(
T , C̃ = Me(g, g)αs, C = hs,

∀y ∈ Y : Cy = gqy(0), C ′
y = H(att(y))qy(0)

)
.

KeyGen(MK , S). The key generation algorithm will take
as input a set of attributesS and output a key that identifies
with that set. The algorithm first chooses a randomr ∈ Zp,
and then randomrj ∈ Zp for each attributej ∈ S. Then it
computes the key as

SK =
(
D = g(α+r)/β ,

∀j ∈ S : Dj = gr ·H(j)rj , D′
j = grj

)
.

Delegate(SK, S̃). The delegation algorithm takes in a se-
cret key SK, which is for a setS of attributes, and another
set S̃ such thatS̃ ⊆ S. The secret key is of the form
SK = (D, ∀j ∈ S : Dj , D

′
j). The algorithm chooses

randomr̃ and r̃k∀k ∈ S̃. Then it creates a new secret key
as

S̃K = (D̃ = Df r̃,

∀k ∈ S̃ : D̃k = Dkg
r̃H(k)r̃k , D̃′

k = D′
kg

r̃k).

The resulting secret keỹSK is a secret key for the set̃S.
Since the algorithm re-randomizes the key, a delegated key
is equivalent to one received directly from the authority.

Decrypt(CT,SK). We specify our decryption procedure
as a recursive algorithm. For ease of exposition we present
the simplest form of the decryption algorithm and discuss
potential performance improvements in the next subsection.

We first define a recursive algorithm
DecryptNode(CT,SK, x) that takes as input a ciphertext
CT = (T , C̃, C,∀y ∈ Y : Cy, C

′
y), a private key SK,

which is associated with a setS of attributes, and a nodex
from T .

If the nodex is a leaf node then we leti = att(x) and
define as follows: Ifi ∈ S, then

DecryptNode(CT,SK, x) =
e(Di, Cx)
e(D′

i, C
′
x)

=
e
(
gr ·H(i)ri , hqx(0)

)
e(gri ,H(i)qx(0))

= e(g, g)rqx(0).

If i /∈ S, then we defineDecryptNode(CT,SK, x) = ⊥.
We now consider the recursive case whenx is a non-

leaf node. The algorithmDecryptNode(CT,SK, x) then
proceeds as follows: For all nodesz that are children ofx,
it calls DecryptNode(CT,SK, z) and stores the output as
Fz. Let Sx be an arbitrarykx-sized set of child nodesz

such thatFz 6= ⊥. If no such set exists then the node was
not satisfied and the function returns⊥.

Otherwise, we compute

Fx =
∏

z∈Sx

F
∆

i,S
′
x
(0)

z , where
i=index(z)

S
′
x={index(z):z∈Sx}

=
∏

z∈Sx

(e(g, g)r·qz(0))
∆

i,S
′
x
(0)

=
∏

z∈Sx

(e(g, g)r·qparent(z)(index(z)))
∆

i,S
′
x
(0)

(by construction)

=
∏

z∈Sx

e(g, g)
r·qx(i)·∆

i,S
′
x
(0)

= e(g, g)r·qx(0) (using polynomial interpolation)

and return the result.
Now that we have defined our functionDecryptNode,

we can define the decryption algorithm. The algorithm
begins by simply calling the function on the root nodeR
of the treeT . If the tree is satisfied byS we setA =
DecryptNode(CT,SK, r) = e(g, g)rqR(0) = e(g, g)rs.
The algorithm now decrypts by computing

C̃/(e(C,D)/A) = C̃/
(
e
(
hs, g(α+r)/β

)
/e(g, g)rs

)
= M.

4.3 Discussion

We now provide a brief discussion about the security in-
tuition for our scheme (a full proof is given in Appendix A),
our scheme’s efficiency, and how we might handle key re-
vocation.

Security intuition. As in previous attribute-based encryp-
tion schemes the main challenge in designing our scheme
was to prevent against attacks from colluding users. Like
the scheme of Sahai and Waters [24] our solution random-
izes users private keys such that they cannot be combined;
however, in our solution the secret sharing must be embed-
ded into the ciphertext instead to the private keys. In order
to decrypt an attacker clearly must recovere(g, g)αs. In
order to do this the attacker must pairC from the cipher-
text with theD component from some user’s private key.
This will result in the desired valuee(g, g)αs, but blinded
by some valuee(g, g)rs. This value can be blinded out if
and only if enough the user has the correct key components
to satisfy the secret sharing scheme embedded in the cipher-
text. Collusion attacks won’t help since the blinding value
is randomized to the randomness from a particular user’s
private key.

While we described our scheme to be secure against cho-
sen plaintext attacks, the security of our scheme can effi-
ciently be extended to chosen ciphertext attacks by applying

a random oracle technique such as that of the the Fujisaki-
Okamoto transformation [13]. Alternatively, we can lever-
age the delegation mechanism of our scheme and apply the
Cannetti, Halevi, and Katz [10] method for achieving CCA-
security.

Efficiency. The efficiencies of the key generation and en-
cryption algorithms are both fairly straightforward. The
encryption algorithm will require two exponentiations for
each leaf in the ciphertext’s access tree. The ciphertext size
will include two group elements for each tree leaf. The key
generation algorithm requires two exponentiations for every
attribute given to the user, and the private key consists of
two group elements for every attribute. In its simplest form,
the decryption algorithm could require two pairings for ev-
ery leaf of the access tree that is matched by a private key
attribute and (at most2) one exponentiation for each node
along a path from such a leaf to the root. However, there
might be several ways to satisfy a policy, so a more intelli-
gent algorithm might try to optimize along these lines. In
our implementation description in Section 5 we described
various performance enhancements.

Key-revocation and numerical attributes. Key-
Revocation is typically a difficult issue in identity-based
encryption [27, 7] and related schemes. The core challenge
is that since the party encrypting the data does not obtain
the receiver’s certificate on-line, he is not able to check
if the the receiving party is revoked. In attribute-based
encryption the problem is even more tricky since several
different users might match the decryption policy. The
usual solution is to append to each of the identities or
descriptive attributes a date for when the attribute expires.
For instance, Pirretti et al. [23] suggest extending each
attribute with an expiration date. For example, instead of
using the attribute “Computer Science” we might use the
attribute “Computer Science: Oct 17, 2006”.

This type of method has a several shortcomings. Since
the attributes incorporate an exact date there must be agree-
ment on this between the party encrypting the data and the
key issuing authority. If we wish for a party to be able
to specify policy about revocation dates on a fine-grained
scale, users will be forced to go often to the authority and
maintain a large amount of private key storage, a key for
every time period.

Ideally, we would like an attribute-based encryption sys-
tem to allow a key authority to give out a single key with
some expiration dateX rather than a separate key for every
time period beforeX. When a party encrypts a message on
some dateY , a user with a key expiring on dateX should
be able to decrypt iffX ≥ Y and the rest of the policy

2Fewer exponentiations may occur if there is an unsatisfied internal
node along the path.

"a : *0**"

"a : 0***"

"a : **0*" "a : ***0"

Figure 1. Policy tree implementing the integer
comparison “a < 11”.

matches the user’s attributes. In this manner, different ex-
piration dates can be given to different users and there does
not need to be any close coordination between the parties
encrypting data and the authority.

This sort of functionality can be realized by extending
our attributes to support numerical values and our policies
to support integer comparisons. To represent a numerical
attribute “a =k” for somen-bit integerk we convert it into
a “bag of bits” representation, producingn (non-numerical)
attributes which specify the value of each bit ink. As an
example, to give out a private key with the 4-bit attribute
“a = 9”, we would instead include “a : 1***”, “a : *0***”,
“a : **0*”, and “a : ***1” in the key. We can then use poli-
cies of AND and OR gates to implement integer compar-
isons over such attributes, as shown for “a< 11” in Fig-
ure 1. There is a direct correspondence between the bits
of the constant 11 and the choice of gates. Policies for≤,
>, ≥, and= can be implemented similarly with at mostn
gates, or possibly fewer depending on the constant. It is
also possible to construct comparisons between two numer-
ical attributes (rather than an attribute and a constant) using
roughly3n gates, although it is less clear when this would
be useful in practice.

5 Implementation

In this section we discuss practical issues in implement-
ing the construction of Section 4, including several opti-
mizations, a description of the toolkit we have developed,
and measurements of its performance.

5.1 Decryption Efficiency Improvements

While little can be done to reduce the group operations
necessary for the setup, key generation, and encryption al-
gorithms, the efficiency of the decryption algorithm can
be improved substantially with novel techniques. We ex-
plain these improvements here and later give measurements

showing their effects in Section 5.3.

Optimizing the decryption strategy. The recursive algo-
rithm given in Section 4 results in two pairings for each leaf
node that is matched by a private key attribute, and up to one
exponentiation for every node occurring along the path from
such a node to the root (not including the root). The final
step after the recursive portion adds an additional pairing.
Of course, at each internal node with thresholdk, the results
from all butk of its children are thrown away. By consid-
ering ahead of time which leaf nodes are satisfied and pick-
ing a subset of them which results in the satisfaction of the
entire access tree, we may avoid evaluatingDecryptNode
where the result will not ultimately be used.

More precisely, letM be a subset of the nodes in an ac-
cess treeT . We definerestrict(T ,M) to be the access tree
formed by removing the following nodes fromT (while
leaving the thresholds unmodified). First, we remove all
nodes not inM . Next we remove any node not connected
to the original root ofT along with any internal nodex that
now has fewer children than its thresholdkx. This is re-
peated until no further nodes are removed, and the result
is restrict(T ,M). So given an access treeT and a set of
attributesγ that satisfies it, the natural problem is to pick
a setM such thatγ satisfiesrestrict(T ,M) and the num-
ber of leaves inM is minimized (considering pairing to be
the most expensive operation). This is easily accomplished
with a straightforward recursive algorithm that makes a sin-
gle traversal of the tree. We may then useDecryptNode on
restrict(T ,M) with the same result.

Direct computation of DecryptNode. Further improve-
ments may be gained by abandoning theDecryptNode
function and making more direct computations. Intuitively,
we imagine flattening out the tree of recursive calls to
DecryptNode, then combining the exponentiations into
one per (used) leaf node. Precisely, letT be an access tree
with root r, γ be a set of attributes, andM ⊆ T be such
thatγ satisfiesrestrict(T ,M). Assume also thatM is min-
imized so that no internal node has more children than its
threshold. LetL ⊆ M be the leaf nodes inM . Then for
each̀ ∈ L, we denote the path from̀to r as

ρ(`) = (`, parent(`), parent(parent(`)), . . . r) .

Also, denote the set of siblings of a nodex (including itself)
assibs(x) = { y | parent(x) = parent(y) }. Given this no-
tation, we may proceed to directly compute the result of
DecryptNode(CT,SK, r). First, for each̀ ∈ L, compute
z` as follows.

z` =
∏

x∈ρ(`)
x6=r

∆i,S(0) where i=index(x)
S={ index(y) | y ∈ sibs(x) }

Then

DecryptNode(CT,SK, r) =
∏
`∈L

i=att(`)

(
e(Di, C`)
e(D′

i, C
′
`)

)z`

.

Using this method, the number of exponentiations in the en-
tire decryption algorithm is reduced from|M | − 1 (i.e., one
for every node but the root) to|L|. The number of pairings
is 2|L|.

Merging pairings. Still further reductions (this time in
the number of pairings) are possible by combining leaves
using the same attribute. Ifatt(`1) = att(`2) = i for some
`1, `2 in L, then

e(Di, C`1)

e(D′
i, C

′
`1

)

!z`1

·

e(Di, C`2)

e(D′
i, C

′
`2

)

!z`2

=
e(Di, C

z`1
`1

)

e(D′
i, C

′ z`1
`1

)
·

e(Di, C
z`2
`2

)

e(D′
i, C

′ z`2
`2

)

=
e(Di, C

z`1
`1

· Cz`2
`2

)

e(D′
i, C

′ z`1
`1

· C′ z`2
`2

)
.

Using this fact, we may combine all the pairings for each
distinct attribute inL, reducing the total pairings to2m,
wherem is the number of distinct attributes appearing in
L. Note, however, that the number of exponentiations in-
creases, and some of the exponentiations must now be per-
formed in G0 rather thanG1. Specifically, ifm′ is the
number of leaves sharing their attribute with at least one
other leaf, we must perform2m′ exponentiations inG0 and
|L| − m′ in G1, rather than zero and|L| respectively. If
exponentiations inG0 (an elliptic curve group) are slower
than inG1 (a finite field of the same order), this technique
has the potential to increase decryption time. We further
investigate this tradeoff in Section 5.3.

5.2 The cpabe Toolkit

We have implemented the construction of Section 4 as
a convenient set of tools we call thecpabe package [4],
which has been made available on the web under the GPL.
The implementation uses the Pairing Based Cryptography
(PBC) library [21].3 The interface of the toolkit is designed
for straightforward invocation by larger systems in addition
to manual usage. It provides four command line tools.

cpabe-setup
Generates a public key and a master key.

3PBC is in turn based on the GNU Multiple Precision arithmetic library
(GMP), a high performance arbitrary precision arithmetic implementation
suitable for cryptography.

cpabe-keygen
Given a master key, generates a private key for a set of
attributes, compiling numerical attributes as necessary.

cpabe-enc
Given a public key, encrypts a file under an access tree
specified in a policy language.

cpabe-dec
Given a private key, decrypts a file.

Thecpabe toolkit supports the numerical attributes and
range queries described in Section 4.3 and provides a fa-
miliar language of expressions with which to specify access
policies. These features are illustrated in the sample usage
session of Figure 2.

In this example, thecpabe-keygen tool was first used
to produce private keys for two new employees, “Sara” and
“Kevin”. A mix of regular and numerical attributes were
specified; in particular shell backticks were used to store the
current timestamp (in seconds since 1970) in the “hiredate”
attribute. Thecpabe-enc tool was then used to encrypt a
security sensitive report under a complex policy (in this case
specified on the standard input). The policy allows decryp-
tion by sysadmins with at least a certain seniority (hired be-
fore January 1, 2000) and those on the security team. Mem-
bers of the business staff may decrypt if they are in the audit
group and the strategy team, or if they are in one of those
teams and are an executive of “level” five or more. So in
this example, Kevin would be able to use the key stored as
kevin priv key to decrypt the resulting document, but
Sara would not be able to use hers to decrypt the document.

As demonstrated by this example, the policy language al-
lows the general threshold gates of the underlying scheme,
but also provides AND and OR gates for convenience.
These are appropriately merged to simplify the tree, that is,
specifying the policy “(a and b) and (c and d and e)” would
result in a single gate. The tools also handle compiling nu-
merical attributes to their “bag of bits” representation and
comparisons into their gate-level implementation.

5.3 Performance Measurements

We now provide some information on the performance
achieved by thecpabe toolkit. Figure 3 displays measure-
ments of private key generation time, encryption time, and
decryption time produced by runningcpabe-keygen ,
cpabe-enc , and cpabe-dec on a range of problem
sizes. The measurements were taken on a modern work-
station.4 The implementation uses a 160-bit elliptic curve
group based on the supersingular curvey2 = x3 + x over
a 512-bit finite field. On the test machine, the PBC library
can compute pairings in approximately 5.5ms, and expo-
nentiations inG0 andG1 take about 6.4ms and 0.6ms re-

4The workstation’s processor is a 64-bit, 3.2 Ghz Pentium 4.

$ cpabe-keygen -o sara priv key pub key master key \
sysadmin it department 'office = 1431' 'hire date = '`date +%s`

$ cpabe-keygen -o kevin priv key pub key master key \
business staff strategy team 'executive level = 7' \
'office = 2362' 'hire date = '`date +%s`

$ cpabe-enc pub key security report.pdf
(sysadmin and (hire date < 946702800 or security team)) or
(business staff and 2 of (executive level >= 5, audit group, strategy team))

Figure 2. Example usage of the cpabe toolkit. Two private keys are issued for vari-
ous sets of attributes (normal and numerical) using cpabe-keygen . A document is
encrypted under a complex policy using cpabe-enc .

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50

tim
e

to
 g

en
er

at
e

pr
iv

at
e

ke
y

(s
ec

on
ds

)

attributes in private key

(a) Key generation time.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100

tim
e

to
 e

nc
ry

pt
 (

se
co

nd
s)

leaf nodes in policy

(b) Encryption time.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 20 40 60 80 100

tim
e

to
 d

ec
ry

pt
 (

se
co

nd
s)

leaf nodes in policy

naive
flatten
merge

(c) Decryption time with various levels of opti-
mization.

Figure 3. Performance of the cpabe toolkit.

spectively. Randomly selecting elements (by reading from
the Linux kernel’s/dev/urandom) is also a significant
operation, requiring about 16ms forG0 and 1.6ms forG1.

As expected,cpabe-keygen runs in time precisely
linear in the number of attributes associated with the key it
is issuing. The running time ofcpabe-enc is also almost
perfectly linear with respect to the number of leaf nodes
in the access policy. The polynomial operations at internal
nodes amount to a modest number of multiplications and
do not significantly contribute to the running time. Both re-
main quite feasible for even the largest problem instances.

The performance ofcpabe-dec is somewhat more in-
teresting. It is slightly more difficult to measure in the ab-
sence of a precise application, since the decryption time can
depend significantly on the particular access trees and set of
attributes involved. In an attempt to average over this vari-
ation, we rancpabe-dec on a series of ciphertexts that

had been encrypted under randomly generated policy trees
of various sizes. The trees were generated by starting with
only a root node, then repeatedly adding a child to a ran-
domly selected node until the desired number of leaf nodes
was reached. At that point random thresholds were selected
for each internal node. Since the time to decrypt also de-
pends on the particular attributes available, for each run of
cpabe-dec , we selected a key uniformly at random from
all keys satisfying the policy. This was accomplished by it-
eratively taking random subsets of the attributes appearing
in leaves of the tree and discarding those that did not satisfy
it. A series of runs ofcpabe-dec conducted in this man-
ner produced the running times displayed in Figure 3 (c).

These measurements give some insight into the effects
of the optimizations described in Section 5.1 (all of which
are implemented in the system). The line marked “naive”
denotes the decryption time resulting from running the re-

cursive DecryptNode algorithm and arbitrarily selecting
nodes to satisfy each threshold gate. By ensuring that the
final number of leaf nodes is minimized when making these
decisions and replacing theDecryptNode algorithm with
the “flattened” algorithm to reduce exponentiations, we ob-
tain the improved times denoted “flatten”. Perhaps most
interestingly, employing the technique for merging pair-
ings between leaf nodes sharing the same attribute, denoted
“merge”, actually increases running time in this case, due to
fact that exponentiations are more expensive inG0 than in
G1.

In summary,cpabe-keygen andcpabe-enc run in
a predictable amount of time based on the number of at-
tributes in a key or leaves in a policy tree. The performance
of cpabe-dec depends on the specific access tree of the
ciphertext and the attributes available in the private key, and
can be improved by some of the optimizations considered
in Section 5.1. In all cases, the toolkit consumes almost
no overhead beyond the cost of the underlying group op-
erations and random selection of elements. Large private
keys and policies are possible in practice while maintaining
reasonable running times.

6 Conclusions and Open Directions

We created a system for Ciphertext-Policy Attribute
Based Encryption. Our system allows for a new type of
encrypted access control where user’s private keys are spec-
ified by a set of attributes and a party encrypting data can
specify a policy over these attributes specifying which users
are able to decrypt. Our system allows policies to be ex-
pressed as any monotonic tree access structure and is resis-
tant to collusion attacks in which an attacker might obtain
multiple private keys. Finally, we provided an implemen-
tation of our system, which included several optimization
techniques.

In the future, it would be interesting to consider attribute-
based encryption systems with different types of express-
ibility. While, Key-Policy ABE and Ciphertext-Policy ABE
capture two interesting and complimentary types of systems
there certainly exist other types of systems. The primary
challenge in this line of work is to find a new systems with
elegant forms of expression that produce more than an arbi-
trary combination of techniques.

One limitation of our system is that it is proved secure
under the generic group heuristic. We believe an important
endeavor would be to prove a system secure under a more
standard and non-interactive assumption. This type of work
would be interesting even if it resulted in a moderate loss of
efficiency from our existing system.

References

[1] A. Beimel. Secure Schemes for Secret Sharing and Key Dis-
tribution. PhD thesis, Israel Institute of Technology, Tech-
nion, Haifa, Israel, 1996.

[2] M. Bellare and P. Rogaway. Random oracles are practical:
A paradigm for designing efficient protocols. InACM con-
ference on Computer and Communications Security (ACM
CCS), pages 62–73, 1993.

[3] J. Benaloh and L. J. Generalized Secret Sharing and Mono-
tone Functions. InAdvances in Cryptology – CRYPTO, vol-
ume 403 ofLNCS, pages 27–36. Springer, 1988.

[4] J. Bethencourt, A. Sahai, and B. Waters. Thecpabe toolkit.
http://acsc.csl.sri.com/cpabe/ .

[5] G. R. Blakley. Safeguarding cryptographic keys. InNational
Computer Conference, pages 313–317. American Federa-
tion of Information Processing Societies Proceedings, 1979.

[6] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical iden-
tity based encryption with constant size ciphertext. In
R. Cramer, editor,EUROCRYPT, volume 3494 ofLecture
Notes in Computer Science, pages 440–456. Springer, 2005.

[7] D. Boneh and M. Franklin. Identity Based Encryption from
the Weil Pairing. InAdvances in Cryptology – CRYPTO,
volume 2139 ofLNCS, pages 213–229. Springer, 2001.

[8] R. W. Bradshaw, J. E. Holt, and K. E. Seamons. Conceal-
ing complex policies with hidden credentials. InACM Con-
ference on Computer and Communications Security, pages
146–157, 2004.

[9] E. F. Brickell. Some ideal secret sharing schemes.Journal of
Combinatorial Mathematics and Combinatorial Computing,
6:105–113, 1989.

[10] R. Canetti, S. Halevi, and J. Katz. Chosen Ciphertext Secu-
rity from Identity Based Encryption. InAdvances in Cryp-
tology – Eurocrypt, volume 3027 ofLNCS, pages 207–222.
Springer, 2004.

[11] M. Chase. Multi-authority attribute-based encryption. In
(To Appear) The Fourth Theory of Cryptography Conference
(TCC 2007), 2007.

[12] C. Cocks. An identity based encryption scheme based on
quadratic residues. InIMA Int. Conf., pages 360–363, 2001.

[13] E. Fujisaki and T. Okamoto. Secure integration of asymmet-
ric and symmetric encryption schemes. InCRYPTO, pages
537–554, 1999.

[14] R. Gavriloaie, W. Nejdl, D. Olmedilla, K. E. Seamons, and
M. Winslett. No registration needed: How to use declarative
policies and negotiation to access sensitive resources on the
semantic web. InESWS, pages 342–356, 2004.

[15] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute
Based Encryption for Fine-Grained Access Conrol of En-
crypted Data. InACM conference on Computer and Com-
munications Security (ACM CCS), 2006.

[16] H. Harney, A. Colgrove, and P. D. McDaniel. Principles of
policy in secure groups. InNDSS, 2001.

[17] M. Ito, A. Saito, and T. Nishizeki. Secret Sharing Scheme
Realizing General Access Structure. InIEEE Globecom.
IEEE, 1987.

[18] M. H. Kang, J. S. Park, and J. N. Froscher. Access control
mechanisms for inter-organizational workflow. InSACMAT
’01: Proceedings of the sixth ACM symposium on Access

control models and technologies, pages 66–74, New York,
NY, USA, 2001. ACM Press.

[19] A. Kapadia, P. Tsang, and S. Smith. Attribute-based publish-
ing with hidden credentials and hidden policies. InNDSS,
2007.

[20] J. Li, N. Li, and W. H. Winsborough. Automated trust nego-
tiation using cryptographic credentials. InACM Conference
on Computer and Communications Security, pages 46–57,
2005.

[21] B. Lynn. The Pairing-Based Cryptography (PBC) library.
http://crypto.stanford.edu/pbc .

[22] P. D. McDaniel and A. Prakash. Methods and limitations
of security policy reconciliation. InIEEE Symposium on
Security and Privacy, pages 73–87, 2002.

[23] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters. Secure
Atrribute-Based Systems. InACM conference on Computer
and Communications Security (ACM CCS), 2006.

[24] A. Sahai and B. Waters. Fuzzy Identity Based Encryption. In
Advances in Cryptology – Eurocrypt, volume 3494 ofLNCS,
pages 457–473. Springer, 2005.

[25] J. T. Schwartz. Fast probabilistic algorithms for verification
of polynomial identities.J. ACM, 27(4):701–717, 1980.

[26] A. Shamir. How to share a secret.Commun. ACM,
22(11):612–613, 1979.

[27] A. Shamir. Identity Based Cryptosystems and Signature
Schemes. InAdvances in Cryptology – CRYPTO, volume
196 ofLNCS, pages 37–53. Springer, 1984.

[28] V. Shoup. Lower bounds for discrete logarithms and related
problems. InEUROCRYPT, pages 256–266, 1997.

[29] N. P. Smart. Access control using pairing based cryptogra-
phy. InCT-RSA, pages 111–121, 2003.

[30] T. Yu and M. Winslett. A unified scheme for resource pro-
tection in automated trust negotiation. InIEEE Symposium
on Security and Privacy, pages 110–122, 2003.

[31] R. Zippel. Probabilistic algorithms for sparse polynomials.
In E. W. Ng, editor,EUROSAM, volume 72 ofLecture Notes
in Computer Science, pages 216–226. Springer, 1979.

A Security Proof

In this section, we use the generic bilinear group model
of [6, 28] and the random oracle model [2] to argue that no
efficient adversary that acts generically on the groups un-
derlying our scheme can break the security of our scheme
with any reasonable probability. At an intuitive level, this
means that if there are any vulnerabilities in our scheme,
then these vulnerabilities must exploit specific mathemati-
cal properties of elliptic curve groups or cryptographic hash
functions used when instantiating our construction.

While from a security standpoint, it would be prefer-
able to have a proof of security that reduces the problem of
breaking our scheme to a well-studied complexity-theoretic
problem, there is reason to believe that such reductions will
only exist for more complex (and less efficient) schemes
than the one we give here. We also stress that ours is the
first construction which offers the security properties we are
proposing here; we strongly encourage further research that
can place this kind of security on a firmer theoretical foun-
dation.

The generic bilinear group model. We follow [6] here:
We consider two random encodingsψ0, ψ1 of the additive
groupFp, that is injective mapsψ0, ψ1 : Fp → {0, 1}m,
wherem > 3 log(p). For i = 0, 1 we writeGi = {ψi(x) :
x ∈ Fp}. We are given oracles to compute the induced
group action onG0,G1 and an oracle to compute a non-
degenerate bilinear mape : G0 × G0 → G1. We are also
given a random oracle to represent the hash functionH. We
refer toG0 as a generic bilinear group.

The following theorem gives a lower bound on the ad-
vantage of a generic adversary in breaking our CP-ABE
scheme.

Theorem 1 Let ψ0, ψ1,G0,G1 be defined as above. For
any adversaryA, let q be a bound on the total number of
group elements it receives from queries it makes to the ora-
cles for the hash function, groupsG0 andG1, and the bilin-
ear mape, and from its interaction with the CP-ABE secu-
rity game. Then we have that the advantage of the adversary
in the CP-ABE security game isO(q2/p).

Proof. We first make the following standard observation,
which follows from a straightforward hybrid argument: In
the CP-ABE security game, the challenge ciphertext has
a componentC̃ which is randomly eitherM0e(g, g)αs or
M1e(g, g)αs. We can instead consider a modified game in
which C̃ is eithere(g, g)αs or e(g, g)θ, whereθ is selected
uniformly at random fromFp, and the adversary must de-
cide which is the case. It is clear that any adversary that has
advantageε in the CP-ABE game can be transformed into
an adversary that has advantage at leastε/2 in the modified

CP-ABE game. (To see this consider two hybrids: one in
which the adversary must distinguish betweenM0e(g, g)αs

ande(g, g)θ; another in which it must distinguish between
e(g, g)θ andM1e(g, g)αs. Clearly both of these are equiv-
alent to the modified game above.) From now on, we will
bound the adversary’s advantage in the modified game.

We now introduce some notation for the simulation of
the modified CP-ABE game. Letg = ψ0(1) (we will write
gx to denoteψ0(x), ande(g, g)y to denoteψ1(y) in the fu-
ture).

At setup time, the simulation choosesα, β at random
from Fp (which we associate with the integers from0 to
p− 1). Note that ifβ = 0, an event that happens with prob-
ability 1/p, then setup is aborted, just as it would be in the
actual scheme. The public parametersh = gβ , f = g1/β ,
ande(g, g)α are sent to the adversary.

When the adversary (or simulation) calls for the evalua-
tion ofH on any stringi, a new random valueti is chosen
from Fp (unless it has already been chosen), and the simu-
lation providesgti as the response toH(i).

When the adversary makes itsj’th key generation query
for the setSj of attributes, a new random valuer(j) is
chosen fromFp, and for everyi ∈ Sj , new random val-

ues r(j)i are chosen fromFp. The simulator then com-

putes: D = g(α+r(j))/β and for eachi ∈ Sj , we have

Di = gr(j)+tir
(j)
i andD′

i = gr
(j)
i . These values are passed

onto the adversary.
When the adversary asks for a challenge, giving two

messagesM0,M1 ∈ G1, and the access treeA, the sim-
ulator does the following. First, it chooses a randoms from
Fp. Then it uses the linear secret sharing scheme associ-
ated withA (as described in Section 4) to construct shares
λi of s for all relevant attributesi. We stress again that the
λi are all chosen uniformly and independently at random
from Fp subject to the linear conditions imposed on them
by the secret sharing scheme. In particular, the choice of
theλi’s can be perfectly simulated by choosing` random
valuesµ1, . . . µ` uniformly and independently fromFp, for
some value of̀ , and then letting theλi be fixed public lin-
ear combinations of theµk ’s ands. We will often think of
theλi as written as such linear combinations of these inde-
pendent random variables later.

Finally, the simulation chooses a randomθ ∈ Fp, and
constructs the encryption as follows:C̃ = e(g, g)θ andC =
hs. For each relevant attributei, we haveCi = gλi , and
C ′

i = gtiλi . These values are sent to the adversary.
(Note, of course, that if the adversary asks for a decryp-

tion key for a set of attributes that pass the challenge ac-
cess structure, then the simulation does not issue the key;
similarly if the adversary asks for a challenge access struc-
ture such that one of the keys already issued pass the access
structure, then the simulation aborts and outputs a random

guess on behalf of the adversary, just as it would in the real
game.)

We will show that with probability1 − O(q2/p), taken
over the randomness of the the choice of variable values
in the simulation, the adversary’s view in this simulation is
identically distributed to what its view would have been if it
had been giveñC = e(g, g)αs. We will therefore conclude
that the advantage of the adversary is at mostO(q2/p), as
claimed.

When the adversary makes a query to the group oracles,
we may condition on the event that (1) the adversary only
provides as input values it received from the simulation,
or intermediate values it already obtained from the oracles,
and (2) there arep distinct values in the ranges of bothφ0

andφ1. (This event happens with overwhelming probability
1 − O(1/p).) As such, we may keep track of the algebraic
expressions being called for from the oracles, as long as no
“unexpected collisions” happen. More precisely, we think
of an oracle query as being a rational functionν = η/ξ in
the variablesθ, α, β, ti’s, r(j)’s, r(j)i ’s, s, andµk ’s. An un-
expected collision would be when two queries correspond-
ing to two distinct formal rational functionsη/ξ 6= η′/ξ′ but
where due to the random choices of these variables’ values,
we have that the values ofη/ξ andη′/ξ′ coincide.

We now condition on the event that no such unexpected
collisions occur in either groupG0 or G1. For any pair
of queries (within a group) corresponding to distinct ratio-
nal functionsη/ξ andη′/ξ′, a collision occurs only if the
non-zero polynomialηξ′ − ξη′ evaluates to zero. Note that
the total degree ofηξ′ − ξη′ is in our case at most5. By
the Schwartz-Zippel lemma [25, 31], the probability of this
event isO(1/p). By a union bound, the probability that any
such collision happens is at mostO(q2/p). Thus, we can
condition on no such collision happening and still maintain
1−O(q2/p) of the probability mass.

Now we consider what the adversary’s view would have
been if we had setθ = αs. We will show that subject to
the conditioning above, the adversary’s view would have
been identically distributed. Since we are in the generic
group model where each group element’s representation is
uniformly and independently chosen, the only way that the
adversary’s view can differ in the case ofθ = αs is if there
are two queriesν and ν′ into G1 such thatν 6= ν′ but
ν|θ=αs = ν′|θ=αs. We will show that this never happens.
Suppose not.

Recall that sinceθ only occurs ase(g, g)θ, which lives
in G1, the only dependence thatν or ν′ can have onθ is by
having some additive terms of the formγ′θ, whereγ′ is a
constant. Therefore, we must have thatν − ν′ = γαs− γθ,
for some constantγ 6= 0. We can then artificially add the
queryν − ν′ + γθ = γαs to the adversary’s queries. But
we will now show that the adversary canneverconstruct a
query fore(g, g)γαs (subject to the conditioning we have al-

titi′ λiti′ titi′λi′ tir
(j) + titi′r

(j)
i′

tir
(j)
i′ ti α+ r(j) αs+ sr(j)

λiλi′ tiλiλi′ λi′r
(j) + λi′tir

(j)
i λir

(j)
i

λi titi′λiλi′ tiλir
(j)
i + titi′λir

(j)
i′ tiλir

(j)
i′

tiλi (r(j) + tir
(j)
i)(r(j) + ti′r

(j′)
i′) (r(j) + tir

(j)
i)r(j

′)
i′ r(j) + tir

(j)
i

r
(j)
i r

(j′)
i′ r

(j)
i s

Table 1. Possible query types from the adversary.

ready made), which will reach a contradiction and establish
the theorem.

What is left now is to do a case analysis based on the
information given to the adversary by the simulation. For
sake of completeness and ease of reference for the reader,
in Table 1 we enumerate over all rational function queries
possible intoG1 by means of the bilinear map and the group
elements given the adversary in the simulation,except those
in which every monomial involves the variableβ, sinceβ
will not be relevant to constructing a query involvingαs.
Here the variablesi andi′ are possible attribute strings, and
the variablesj andj′ are the indices of secret key queries
made by the adversary. These are given in terms ofλi’s,
notµk ’s. The reader may check the values given in Table 1
against the values given in the simulation above.

In the groupG1, in addition to the polynomials in the ta-
ble above, the adversary also has access to1 andα. The ad-
versary can query for arbitrary linear combinations of these,
and we must show that none of these polynomials can be
equal to a polynomial of the formγαs. Recall thatγ 6= 0 is
a constant.

As seen above, the only way that the adversary can create
a term containingαs is by pairingsβ with (α + r(j))/β to
get the termαs + sr(j). In this way, the adversary could
create a query polynomial containingγαs+

∑
j∈T γjsr

(j),
for some setT and constantsγ, γj 6= 0.

In order for the adversary to obtain a query polynomial of
the formγαs, the adversary must add other linear combina-
tions in order to cancel the terms of the form

∑
j∈T γjsr

(j).
We observe (by referencing the table above) that the only

other term that the adversary has access to that could in-
volve monomials of the formsr(j) are obtained by pairing
r(j) + tir

(j)
i with someλi′ , since theλi′ terms are linear

combinations ofs and theµk ’s.
In this way, for setsT ′

j and constantsγ(i,j,i′) 6= 0, the
adversary can construct a query polynomial of the form:

γαs+
∑
j∈T

γjsr
(j) +

∑
(i,i′)∈T ′

j

γ(i,j,i′)

(
λi′r

(j) + λi′tir
(j)
i

)+other terms

Now, to conclude this proof, we do the following case anal-
ysis:

Case 1 There exists somej ∈ T such that the set of secret
sharesLj = {λi′ : ∃i : (i, i′) ∈ T ′

j} do not allow for
the reconstruction of the secrets.

If this is true, then the termsr(j) will not be canceled,
and so the adversary’s query polynomial cannot be of
the formγαs.

Case 2 For all j ∈ T the set of secret sharesLj = {λi′ :
∃i : (i, i′) ∈ T ′

j} do allow for the reconstruction of the
secrets.

Fix any j ∈ T . ConsiderSj , the set of attributes be-
longing to thej’th adversary key request. By the as-
sumption that no requested key should pass the chal-
lenge access structure, and the properties of the secret
sharing scheme, we know that the setL′

j = {λi : i ∈
Sj} cannot allow for the reconstruction ofs.

Thus, there must exist at least one shareλi′ in Lj such
thatλi′ is linearly independent ofL′

j when written in
terms ofs and theµk ’s. By the case analysis, this
means that in the adversary’s query there is a term of
the formλi′tir

(j)
i for somei ∈ Sj .

However, (examining the table above), there is no term
that the adversary has access to that can cancel this
term. Therefore, any adversary query polynomial of
this form cannot be of the formγαs. �

