
Misleading and Defeating Importance-Scanning
Malware Propagation

Guofei Gu, Zesheng Chen
Georgia Institute of Technology

Atlanta, Georgia 30332
{guofei@cc, zchen@ece}.gatech.edu

Phillip Porras
SRI International

Menlo Park, California 94025
porras@csl.sri.com

Wenke Lee
Georgia Institute of Technology

Atlanta, Georgia 30332
wenke@cc.gatech.edu

Abstract—The scan-then-exploit propagation strategy is among
the most widely used methods by which malware spreads across
computer networks. Recently, a new self-learning strategy for
selecting target addresses during malware propagation was
introduced in [1], which we refer to as importance scanning.
Under the importance-scanning approach, malware employs an
address sampling scheme to search for the underlying group
distribution of (vulnerable) hosts in the address space through
which it propagates. The malware utilizes this information to
increase the rate at which it locates viable addresses during
its search for infection targets. In this paper, we introduce a
strategy to combat importance scanning propagation. We propose
the use of white hole networks, which combine several existing
components to dissuade, slow, and ultimately halt the propagation
of importance scanning malware. Based on analytical reasoning
and simulations using real trace and address distribution in-
formation, we demonstrate how the white hole approach can
provide an effective defense, even when the deployment of this
countermeasure represents a very small fraction of the address
space population.

I. INTRODUCTION

Malicious self-propagating code, or malware, is recognized
as a significant threat to Internet security. Most typically,
malware attempts to infect vulnerable machines on the Internet
in an automatic fashion [2], [3]. Existing malware families
are highly versatile in their ability to attack susceptible hosts
through different propagation methods, such as via email at-
tachments, infected P2P media, drive-by download infections,
and scan-then-exploit infections. Among these methods, the
scan-then-exploit strategy remains one of the most commonly
used, and arguably is among the more efficient methods to
rapidly spread malware across the Internet. In particular, scan-
then-exploit malware operates without any need for human
interaction: there is no need to wait for an email to open, a
website visit, or a P2P application data exchange. In essence,
scan-then-exploit malware is able to propagate as fast as it
can find new victims. Thus, there is significant incentive for
malware developers to continue refining the efficiency with
which malware scans yield new candidate addresses.

As a result, malware is becoming smarter in selecting scan
targets. In recent years we have seen an evolution in the
approaches of scanning strategies from naive random-scanning
techniques, to much faster and more evasive propagation
methods. While many malware families (especially worms)
have utilized random scanning techniques with notable suc-

cess [4], [5], in general the random scan method is relatively
inefficient in searching for victim hosts within the Internet,
and its indiscriminate nature makes it highly subject to passive
detection [6]–[8]. A key observation is that a random search
algorithm is ill-suited for seeking targets when those targets
reside in a space at (predictably) non-uniformly distributed
locations.

With respect to Internet address occupation, existing re-
search shows that the real (and also vulnerable) machine
distribution in the whole IP space is not uniform [9]–[11],
and this point has also been noted in some worm studies [5].
Recently, researchers proposed several new propagation strate-
gies for malware families that apply knowledge of the Internet
structure. These strategies fall into two categories: list-based
scanning, and probability-based scanning.

Malware that employs list-based scanning uses a pre-
generated target (IP or subnet) list as the propagation space,
so that the infection does not waste time probing dark space.
For example, some propagation strategies utilize BGP routing
space information [12], some utilize address sampling to
uncover live subnets in the address space prior to spreading
[13]. Staniford et al. [14] studied the top speed of flash worms
assuming the whole vulnerable list is available. Since it is
generally hard to carry a large list of all IP addresses, list-
based worms can aggregate addresses into subnets, e.g., /8 or
/16 subnets.

Probability-based scanning worms further utilize the distri-
bution information instead of treating these subnets equally.
They scan the subnets with certain probability according to
the underlying (vulnerable) machine distribution. A typical
example of this strategy is proposed in [1] about self-learning
worms using importance-scanning. Although currently ob-
served malware families have not fully employed these two
advanced strategies, there are already many preliminary at-
tempts to (partially) utilize these techniques (e.g., local pref-
erence scanning, used by CodeRed [15] among many other
malware variants). Recent research [13] also indicates that
many botnets (e.g., AgoBot [16]) employ blacklists of well-
known monitored IP space or agencies and avoid scanning.
Here, we anticipate the future threat landscape will include
malware that will ultimately adopt the full power of advanced
scanning techniques. Thus, it is important for researchers to
consider these threats and develop countermeasures now.

In particular, importance scanning techniques attempt to
uncover the distribution of live IP addresses (or even real
vulnerable machines), and then focus their infection efforts
on these targets both to achieve a higher scan-to-infection
ratio and to help evade passive monitors by avoiding the
indiscriminate scanning of unused IP addresses. In [1], a self-
learning worm is proposed, which estimates the vulnerability
distribution very early in the infection stage (instead of before
spreading). After an initial infection cycle, the attacker 1

will estimate the distribution according to existing victim
information. Then all the worms will use this vulnerable-host
distribution estimation to adjust their scan probability distri-
bution. Alternatively, importance scanning malware can use
the live-host distribution information instead of vulnerable-
host distribution information, which may be harder to obtain.
For this purpose, malware can use a two-step infection cycle
similar to [13]: it may sample various network segments,
followed by a probability-based spreading phase to those
segments that appear to contain live subnets. In the first phase,
the malware sample-scans addresses from an address segment,
and upon completion will spread with a probabilistic affinity
to those segments that appear to contain targets of interest
(e.g., a population of live subnets).

Importance scanning poses some disturbing challenges for
malware defense research. One implication of these network-
structure-aware infection strategies is that they are by design
intended to avoid low-occupancy address segments, including
darknets that are instrumented with passive worm/malware
detection tools, such as Kalman-filter-based detection [7],
victim number-based detection [8]), Internet Motion Sensor
[6], or network telescopes [17]. Second, importance-scanning
malware is shown to provide a faster infection rate than
other contemporary naive propagation strategies, suggesting
a future of more virulent malware epidemics that combine
speed and stealthy behavior. Chen et al. [18] demonstrates that
counteracting network-aware malware such as importance-
scanning worms is a significant challenge for the strategies
that include host-based defense and IPv6.

In this paper we observe that the predictable affinity of
importance scanning malware toward densely populated net-
works can also be viewed as a potential vulnerability. We
explore the design space of what we refer to as white holes,
which are systems that co-occupy populated network segments
to increase the difficulty with which legitimate hosts can be
targeted. A white hole can turn a legitimate live network
segment into a segment that looks anomalously dense to
a malicious application attempting to avoid honeynets, and
can proactively mask the location of legitimate co-located
addresses.

We introduce a defensive white hole approach that can be
constructed using components from existing techniques, and
analyze their ability to hinder importance-scanning malware
propagation. Further, we examine how the incorporation of

1This worm can actually be considered as a simple botnet. The attacker is
the botmaster in the botnet.

Fig. 1. Architecture of a White Hole

LaBrea-like mechanisms [19] can make a white hole an
effective offensive tool to trap importance scanning malware,
and conclude that the very affinity criteria that allows such
malware to accelerate their infection rates also increases their
susceptibility to our white hole countermeasure. Based upon
analytical reasoning and simulations using real trace and
address distribution information, we demonstrate how LaBrea
mechanisms are far more effective in countering importance-
scanning malware propagation, even when these countermea-
sures are deployed to a small ratio of the address space. We
also discuss some challenging design issues and limitations in
Section V.

II. WHITE HOLE DESIGN

As intelligent as firewalls, content filters, and address trans-
lation systems have become, it generally remains a difficult
challenge to keep the existence of a live subnet or network
segment invisible to attackers. In recognition of this reality,
the alternative approach explored here is to hide the hosts of
a live network segment within a population of seemingly live
phantom addresses. The objective of a white hole service is
to blend live targets in among phantom addresses the way a
tree may be blended into a forest, or a needle into a needle
stack. White holes present interactive responses to malware
probes such that from the malware’s point of view, the density
of responses in the network segment obfuscate the malware’s
ability to successfully identify potential targets. A successful
white hole deployment will effectively prevent the malware
from accurately measuring the address distribution of the
network segment.

We can assemble a white hole in the network by combining
several existing techniques. Figure 1 shows the architecture
of the white hole components, which include an address
mapper, redirector, controller, malware scan detector, active
responder, RolePlayer, VM honeypot, and a decoy honeypot.
The following briefly summarizes the purpose and function of
each component in the white hole architecture.

• Address mapper: Actively collects and updates the
unused IP/port segment of the network that the white

hole will occupy. This can be done using an agent-
manager based architecture (similar to SNMP network
management). A similar technique is used in [20], in
which an active mapping method builds profiles of the
network topology and the TCP/IP policies of all hosts on
the network. Recently, Cooke et al. proposed a system
called Dark Oracle [21], which discovers dark addresses
by actively participating in allocation, routing, and policy
systems, and demonstrated successful operation in several
networks. Unused ports can also be observed and emu-
lated, or a strategic subset of service ports can be selected
and emulated to enhance the realism of the white hole.

• Redirector: Redirects all incoming traffic to unused
IP/ports, as specified by the address mapper, to the
controller. This component is the first line classifier at
the edge router of the protected network. All incoming
packets targeting legitimate end hosts are passed through
without disruption.

• Controller: Decides how redirected traffic will be han-
dled within the white hole space. Streams may be directed
to any of the available active responder components
(including honeypots) within the white hole or filtered
in cases of overload.

• Responders: Include a simple active responder, stateless
role player, virtual machine honeypot, and physical decoy
honeypot to interact with incoming malware scans. Poten-
tial active responders include applications such as iSink
[16], or Honeyd [22] for handling simple scan responses.
These scans may contribute most of the traffic. For simple
scanning as shown in [13], a simple connection responder
may be enough. If the connection needs further interac-
tion, simple connection response may be insufficient to
follow further application-level dialog. In such cases, traf-
fic may be redirected to VM-based honeypots, or even
decoy honeypots (real physical machines), to emulate
full application response. In this way, we can capture
the sampling attacks discussed in [1]. [23] discusses effi-
cient approaches to deploy honeyfarms that can support
large numbers of virtual machines. While this partially
solves the scalability problem, we may also leverage the
similarity of malware dialogs to more efficiently scale
to larger malware scan volumes, as discussed by Cui et
al. in the RolePlayer system [24], [25]. RolePlayer can
achieve the goal of protocol independent adaptive replay
of application dialog in a stateless (memory efficient)
way. That is, one can use such a lightweight technique to
learn existing (captured) malware dialog and then mimic
the dialog to provide quick response for further similar
connections.

• Malware scan detector: Includes among other tech-
niques a detection algorithm such as threshold random
walk (TRW) [26], [27]. We also envision white hole
collaboration, allowing detectors from different white
hole spaces to corroborate scanning patterns, similar to
the Worminator [28] and DOMINO [29] architectures.
Every detector will record scanner addresses in a Bloom

filter. By exchanging these Bloom filters, we can achieve
a privacy-preserving way for distributed attacker scan
detection. Also note when using TRW, we can assign
different weights on scans inside only one white hole
and scans within multiple different white holes because
the later case is more likely a malicious scanner.

The white hole operates by preventing an importance-
scanning malware application from analyzing the group dis-
tribution statistics of the legitimate network in which it is co-
located. In the critical initial sampling stage of an importance-
scanning malware, the malware initiator sends sampling scans
to the Internet (to achieve live-host distribution), or waits
for a certain number of initial infected hosts to report their
vulnerable-host distribution information [1]. In the first case,
response from white hole spaces will be considered as live
hosts. In the case of [1], white holes will use RolePlayers to
mimic infected hosts and report to the attacker, thus white hole
addresses will also be considered as live vulnerable hosts. In
both instances, the white holes significantly disrupts the ability
of the malware to accurately assess the live address distribution
in the white-hole-protected network.

We are also interested in using incoming white hole scans
to detect the malware initiator 2 (malware scan detector),
potentially to help filter scans to legitimate addresses within
the protect network segment. For the propagation strategy of
live-host distribution, one approach is to employ Bloom filters
to capture common source scanning addresses to the white
hole space. For the propagation strategy of vulnerable-host
distribution in [1], in which the attacker waits for existing
victims to report information, we can detect the attacker by
observing numerous outgoing connections to a common target
address in a destination-address Bloom filter. Once a malware
initiator is detected, the redirector can use this information
to drop scans to legitimate addresses within the protected
network. We can also envision sharing bloom filters among
white hole spaces, similar to that of Worminator [28].

Furthermore, we can use a LaBrea [19] like tarpit technique
in white holes to TCP-based malware. These tarpit programs
can answer scan attempts in such a way that the malware
instance at the other end gets ”stuck” in this connection,
sometimes for a very long time [19]. In Section III-B, we
demonstrate that white holes will attract importance scanning
malware to enter LaBrea-like network segments earlier in its
infection phase, and throughout the epidemic with higher prob-
ability. We find that this tarpit defense strategy is extremely
effective when combined with a white hole to attract the
importance-scanning malware.

III. MISLEAD AND DEFEAT IMPORTANCE-SCANNING
MALWARE PROPAGATION

Before our analysis, we list the notation used in the pa-
per in Table I. Note there is a slight difference between

2We do not necessarily assume the detector works in the second (spreading)
stage, although that will definitely improve our performance to defeat the
malware. It is also worth noting that in later section we also analyze the
situation when there is no malware scan detector available.

TABLE I
NOTATION USED IN THE PAPER

N total number of vulnerable hosts on Internet
Ni number of vulnerable hosts in group i
m total number of groups on Internet
I(t) number of infected hosts at time t
Ii(t) number of infected hosts at time t in group i
Ω total number of addresses in the scanning space
Ωi number of addresses in group i
s scanning rate
α infection rate
β correct estimation probability of real vulnerable hosts
pg(i) percent of the live vulnerable hosts in group i
p∗g(i) probability of a scan hitting group i
U total number of addresses used by all white holes
Ui number of addresses covered by the white hole in group i
Ki(t) average number of scans at time t in group i
K(t) total number of scans at time t
ei(t) average number of newly infected hosts at time t in group i
e(t) total number of newly infected hosts at time t

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 /8 Subnet Group (descending order)

 D
is

tr
ib

ut
io

n
P

ro
ba

bi
lit

y

 Witty Distribution
 Web Distribution

(a) In /8 subnet group

10
0

10
1

10
2

10
3

10
4

10
5

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

 /16 Subnet Group (descending order)

 D
is

tr
ib

ut
io

n
P

ro
ba

bi
lit

y

 Witty Distribution
 Web Distribution

(b) In /16 subnet group (X-axis in log scale)

Fig. 2. (Vulnerable) Host distribution in subnet group on Internet

malware propagation strategies utilizing live-host distribution
and vulnerable-host distribution [1]. This will not make a
fundamental difference in our general analysis framework and
results. Specifically, the following analysis is based on [1]
(malware that uses vulnerable-host distribution).

Using AAWP (Analytical Active Worm Propagation) model
[15], we can model the propagation of a malware infection as

I(t + 1) = I(t) + (N − I(t))[1− (1− 1
Ω

)sI(t)]

, where I(t) is the number of infected hosts at time t, N is the
total number of vulnerable hosts on the Internet, Ω is the total
number of addresses in the scanning space, s is the malware
scanning rate.

When a malware infection begins to spread, I(t) << N and
sI(t) << Ω. Thus the AAWP model can be approximated as

I(t + 1) = I(t) + N
sI(t)

Ω
= (1 + α)I(t),

where α = sN
Ω is the infection rate [12], and which represents

the average number of infected vulnerable hosts per unit time
by a single malware victim during the early stage of malware
propagation. By using address distribution information, the

malware can increase its infection rate success. For example,
[12] mentioned that a BGP and Class-A routing worm can
speed up this infection rate by 3.5 and 2.2 times compared to
a regular worm that scans the whole IPv4 space uniformly.

A. Infection Rate and Misleading Effect Analysis

The Internet is partitioned into m groups. As shown in [30],
the infection rate of an importance-scanning malware is

α = sN

m∑

i=1

pg(i)p∗g(i)
Ωi

,

where p∗g(i) is the probability that a scan will hit group i,
pg(i) is the percentage of live vulnerable hosts in group i.

If the malware can exploit the vulnerable host distribution
information and scan Internet according to this probability
distribution, i.e., p∗g(i) = pg(i), we should have

α =
sN

Ω
× Ω

m∑

i=1

(pg(i))
2

Ωi
,

where Ω = 232, i.e., the full Internet address space. There-
fore, importance-scanning malware can increase the infection

0 500 1000 1500 2000 2500 3000 3500 4000
0

2000

4000

6000

8000

10000

12000

 Time t

 N
um

be
r

of
 in

fe
ct

ed
 h

os
ts

 U=0
 U=1200
 U=12000
 U=48000
 Random Witty

(a) Group size /8, misleading U , β = 1

0 500 1000 1500 2000 2500 3000 3500 4000
0

2000

4000

6000

8000

10000

12000

 Time t

 N
um

be
r

of
 in

fe
ct

ed
 h

os
ts

 U=0
 U=1200
 U=12000
 U=48000
 Random Witty

(b) Group size /16, misleading U , β = 1

0 500 1000 1500 2000 2500 3000 3500 4000
0

2000

4000

6000

8000

10000

12000

 Time t

 N
um

be
r

of
 in

fe
ct

ed
 h

os
ts

 U=0
 U=1200
 U=12000
 U=48000
 Random Witty

(c) Group size /8, misleading both N and U , β = 0.1

0 500 1000 1500 2000 2500 3000 3500 4000
0

2000

4000

6000

8000

10000

12000

 Time t

 N
um

be
r

of
 in

fe
ct

ed
 h

os
ts

 U=0
 U=1200
 U=12000
 U=48000
 Random Witty

(d) Group size /16, misleading both N and U , β = 0.1

Fig. 3. Effect of white holes to slow down importance-scanning malware using witty-vulnerable-distribution. For simplicity, only one white holes is deployed.

rate with the factor of Ω
∑m

i=1
(pg(i))2

Ωi
, compared to random-

scanning malware (where α = sN
Ω).

Let Hi denote the event that the ith group deploys a white
hole that covers Ui white hole addresses.

Hi =

{
1, if the ith group deploys a white hole

0, otherwise

When a white hole is introduced, from the view of a
malware, the number of vulnerable hosts increases from N to
N+U (remember all white hole addresses will appear live and
vulnerable to the malware in its estimation at first stage, i.e.,
we mislead the malware by using extra U white hole space,
we refer to this as “mislead U”). When we consider the case
where detection and blocking (i.e., filtering detected malware
scans to legitimate addresses in the sampling phase) is avail-
able (and many networks deploy address filter/blacklisting),
we can provide much less real vulnerable information to the
malware (we refer to this as “mislead N”, i.e., we mislead
the malware by shrinking the true size of N). Thus, for the
malware, the final vulnerable hosts are estimated as Nβ + U ,
where β is the correct estimation probability of real vulnerable
hosts. With the help of detector and wide deployment of
address blacklisting, we could keep β very small.

Thus, a malware estimates the vulnerable-host distribution
as following

p̂g(i) =
Niβ + UiHi

Nβ + U
(1)

When p∗g(i) = p̂g(i), and for simplicity, we assume that the
white hole is deployed only in group k where Uk >> Nk,

α =
sN

Ω
× r × Ω

m∑

i=1

(pg(i))2

Ωi
+ (1− r)sN

pg(k)

Ωk

≈ sN

Ω
× r × Ω

m∑

i=1

(pg(i))2

Ωi
,

where r = Nβ
Nβ+U and we ignore the last item (pg(k) is

very small as assumed). Therefore, the white hole decreases
the infection rate with the factor of Nβ+U

Nβ . When U >> Nβ,
the malware propagation is slowed down through the false
information of the vulnerable-host distribution. In fact, we
find that even using a relatively small white hole, we can
still efficiently mislead and defeat and importance-scanning
malware propagation.

For importance-scanning malware, infection propagation
using distribution information can be modeled as following:

Ii(t + 1) = Ii(t) + (Ni − Ii(t))[1− (1− 1
Ωi

)sItp
∗
g(i)]

To show the analytical results in a realistic situation,
we perform simulation using Matlab based on distribution
information extracted from two real traces. The first data
set is the witty worm from [5]. We extract the real witty
victim distribution information and feed as the underlying
real vulnerable distribution used by the importance scanning

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

 Time t

 N
um

be
r

of
 in

fe
ct

ed
 h

os
ts

 U=0
 U=216

 U=217

 U=218

 Random Code Red

(a) Group size /8, only misleading U , β = 1

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

 Time t

 N
um

be
r

of
 in

fe
ct

ed
 h

os
ts

 U=0
 U=216

 U=217

 U=218

 Random Code Red

(b) Group size /16, only misleading U , β = 1

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

 Time t

 N
um

be
r

of
 in

fe
ct

ed
 h

os
ts

 U=0
 U=216

 U=217

 U=218

 Random Code Red

(c) Group size /8, misleading both N and U , β = 0.1

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

 Time t

 N
um

be
r

of
 in

fe
ct

ed
 h

os
ts

 U=0
 U=216

 U=217

 U=218

 Random Code Red

(d) Group size /16, misleading both N and U , β = 0.1

Fig. 4. Effect of white holes to slow down CodeRed like importance-scanning malware using web-distribution.

malware (we refer to this distribution as witty-vulnerable-
distribution, or simply witty-distribution). The second data set
is the web server distribution from [1]. We use this information
to simulate a CodeRed like importance scanning malware (we
refer to this distribution as web-distribution). Figure 2 shows
the (vulnerable) live host distribution when the addresses are
aggregated into /8 and /16 groups. The shown distribution
results are already sorted in descending order. It is very clear
that the actual distribution of (vulnerable) live hosts is non-
uniform and highly unbalanced. A small portion of groups
have most of the (vulnerable) live hosts. This in another
sense also verifies the intuition why using probability-based
importance scanning may help malware spread faster.

For the witty-vulnerability-distribution based worm exam-
ple, we show the simulation results of misleading strategy
using white holes in Figure 3. We use an initial hitlist of ten,
total victim number 12,000, and scanning rate at 1,200 per
unit time [5].

Figures 3(a)(b) show the results when we only mislead U
(if we do not use malware scan detectors/filters). Figure 3(a)
considers a group size of a /8 network, and (b) for a group
size of a /16 network. We see that in both cases we slow
down the importance scanning malware propagation using
a variable size of white hole address space (from 1,200 to
48,000). The performance with group size /16 is worse than /8

when only using misleading U . This is because /16 distribution
information is definitely more accurate than /8 distribution in-
formation. Thus, using a more detailed distribution information
will make the malware spread faster. That is why although we
use a white hole covering the same space in two cases, the a
malware still propagates faster in the /16 scenario than in the
/8 scenario.

Figure 3(c)(d) shows the cases when we mislead both U
and N (i.e., we also use malware scan detectors/filters), with
β = 0.1. This is much better than only misleading U . From
(c) we see that white hole covering only 48,000 addresses can
greatly impact the malware’s infection growth rate.

For the web-distribution-based CodeRed like malware, we
show the simulation results of a misleading strategy using
white holes in Figure 4. We use an initial hitlist of ten, 360,000
total victims, and a scanning rate of 358/60 ≈ 6 per unit time
(like CodeRed) [15]. We also use white holes covering an
address space size comparable (e.g., 216 − 218) to the total
number of victims.

In short, the effect is similar to the witty case. However, as
we have a much greater total number of victims this time, we
see that the slowing down result is a little less effective than
in the witty case.

0 500 1000 1500 2000 2500 3000 3500 4000
0

2000

4000

6000

8000

10000

12000

 Time t

 N
um

be
r

of
 in

fe
ct

ed
 h

os
ts

 U=0
 U=1200
 U=12000
 U=48000
 Random Witty

(a) Group size /8, only misleading U (β = 1), plus
tarpit

0 500 1000 1500 2000 2500 3000 3500 4000
0

2000

4000

6000

8000

10000

12000

 Time t

 N
um

be
r

of
 in

fe
ct

ed
 h

os
ts U=0

 U=1200
 U=12000
 U=48000
 Random Witty

(b) Group size /16, only misleading U (β = 1), plus
tarpit

0 500 1000 1500 2000 2500 3000 3500 4000
0

2000

4000

6000

8000

10000

12000

 Time t

 N
um

be
r

of
 in

fe
ct

ed
 h

os
ts

 U=0
 U=1200
 U=12000
 U=48000
 Random Witty

(c) Group size /8, misleading both N and U (β =
0.1), plus tarpit

0 500 1000 1500 2000 2500 3000 3500 4000
0

2000

4000

6000

8000

10000

12000

 Time t

 N
um

be
r

of
 in

fe
ct

ed
 h

os
ts

 U=0
 U=1200
 U=12000
 U=48000
 Random Witty

(d) Group size /16, misleading both N and U (β =
0.1), plus tarpit

Fig. 5. Effect of white holes to defeat importance-scanning malware using witty-vulnerable-distribution. The white holes also tarpit incoming connection
(LaBrea-like).

B. Using Tarpit in White Holes

We now consider the effects of incorporating a LaBrea-
like [19] service into the white hole to defend against an
importance-scanning malware, by sticking the connection for
a long time (note this only works on TCP-based malware.) We
modify the AAWP model:

K(t + 1) = K(t)

(
1− p∗g(k)

U

Ωk

)
+ se(t)

Ki(t + 1) = K(t + 1)p∗g(i)

ei(i + 1) = (Ni − Ii(t))

[
1− (1− 1

Ωi
)Ki(t+1)

]

e(t + 1) =
m∑

i=1

ei(t + 1)

Ii(t + 1) = Ii(t) + ei(t + 1)

I(t + 1) =
m∑

i=1

Ii(t + 1).

where Ki(t) and ei(t) denote the average number of scans
and newly infected hosts at time t in group i (white hole
is deployed in group k as before). The results with witty-
vulnerable-distribution are shown in Figure 5.

From Figure 5(a)(b), we observe that the group size at
/16 actually has a better performance (white holes can slow
down malware propagation more) than the group size at /8

(opposite to the results from using just misleading U as shown
in Figure 3). This is because the probability of the white hole
being scanned is not changed when using /8 or /16, but the
probability for the group with size /16 is significantly reduced
from the group with /8. Thus, very likely, before the /16 group
is hit, the malware is already stuck within the white holes.

Figure 6 shows the results on CodeRed like importance-
scanning malware using web-distribution. We again confirm
the effectiveness of white holes in slowing down or even
stopping importance-scanning malware propagation. Similar
to the witty case, the effectiveness of white holes in group
size /16 is better than that in group size /8. Interestingly,
we can use much smaller white holes (e.g., 213 = 8, 192,
which is much smaller compared to the total victim number
360, 000) to achieve satisfactory results (almost halting the
malware propagation) as shown in Figure 6(c)(f). This means
that although the higher number of total victims may help
importance-scanning malware spread faster than in the case
with less total victims, our white holes combining with tarpits
also benefits from this situation, i.e., achieving better perfor-
mance in its ability to defeat malware using relatively small
white holes.

Our results suggest that combining a LaBrea-like technique
is extremely effective in the context of importance-scanning
malware in comparison to other malware propagation strate-
gies. For non-importance scanning worms, Chen et al. [15]

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

 Time t

 N
um

be
r

of
 in

fe
ct

ed
 h

os
ts

 U=0
 U=216

 U=217

 U=218

 Random Code Red

(a) Group size /8, only misleading U (β = 1,
no detection/blocking), plus tarpit

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

 Time t

 N
um

be
r

of
 in

fe
ct

ed
 h

os
ts

 U=0
 U=216

 U=217

 U=218

 Random Code Red

(b) Group size /16, only misleading U (β = 1,
no detection/blocking), plus tarpit

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

 Time t

 N
um

be
r

of
 in

fe
ct

ed
 h

os
ts

 U=0
 U=213

 U=214

 U=215

 Random Code Red

(c) Group size /16, only misleading U (β = 1,
no detection/blocking), plus tarpit. Use smaller
white space.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

 Time t

 N
um

be
r

of
 in

fe
ct

ed
 h

os
ts

 U=0
 U=216

 U=217

 U=218

 Random Code Red

(d) Group size /8, misleading both N and U
(β = 0.1), plus tarpit

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

 Time t

 N
um

be
r

of
 in

fe
ct

ed
 h

os
ts

 U=0
 U=216

 U=217

 U=218

 Random Code Red

(e) Group size /16, misleading both N and U
(β = 0.1), plus tarpit

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

 Time t

 N
um

be
r

of
 in

fe
ct

ed
 h

os
ts

 U=0
 U=213

 U=214

 U=215

 Random Code Red

(f) Group size /16, misleading both N and U
(β = 0.1), plus tarpit. Use smaller white space.

Fig. 6. Effect of white holes to defeat CodeRed like importance-scanning malware using web-distribution. The white holes also tarpit incoming connection
(LaBrea-like).

found that one needs at least 218 LaBrea hosts to effectively
defend against an active worm. Here we find that for the
witty case with a total of 12,000 victims, a single white hole
covering only 12,000 addresses (Figure 6(d)) is effective in
halting the malware propagation. Even without misleading N
(no detection/blocking components available), we can still use
white holes covering 48,000 addresses to defeat the malware
propagation efficiently (Figure 6(b)). For our CodeRed-like
importance-scanning malware with a total 360,000 victims,
white holes covering only 213 = 8, 192 addresses (Figure
6(f)) are effective in halting the malware propagation. Even
without detection/blocking components (no misleading N), we
still can use white holes covering 215 = 32, 768 to defeat
the malware propagation efficiently (Figure 6(c)). In fact, we
exploit the bias of importance-scanning results to guide the
malware toward the white hole space, using the malware’s
own affinity to densely populated network segments against it
to lure into the LaBrea countermeasure.

IV. RELATED WORK

There is an abundance of work covering the use of un-
used space for malware/worm detection and defense. Most
of this research involves passive monitoring techniques, such
as Internet Motion Sensor [6], telescope [17], iSink [16].
Some of these systems also employ simple active response to
TCP connections, but do not handle further request after TCP

handshaking. Their primary purpose is to record and analyze
incoming traffic.

There are also approaches that detect malware/worm out-
breaks through the use of monitored traffic. Zou et al. propose
a Kalman filter based detection [7] for efficient worm early
warning. Wu et al. propose a victim number-based approach
[7] to detecting the exponential increasing scans by worms.
Gu et al. [31] propose a destination-source correlation (DSC)
approach for efficient worm propagation detection in local
networks.

Honeypot and honeynet techniques are used to lure attacks,
and their functionality can range from simple connection
acknowledgment and traffic collection, to full interaction with
attackers. Several honeypot projects, such as honeynet [32],
honeyd [22], honeyfarm [23], GQ [25], show great potential
value for Internet malware study and defense. In some sense,
a white hole could be considered as a special designed (non-
traditional) active honeynet system with multiple honeypots
together with other security components to fulfill a special
purpose of misleading/defeating importance-scanning malware
propagation, in addition to traditional general-purpose honey-
pot functionalities and services.

Openfire [33], which also exploits the idea of responding
to all scan attempts to unused address space, is perhaps the
most similar to our white holes, but with different focus and

purpose. Openfire focuses on using real decoy machines to
reduce general attacks on (relative small) legitimate networks.
The white hole technique is designed in the context of
addressing importance-scanning malware, with the objective
of misleading and ultimately defeating them when coupled
with LaBrea-like countermeasures. White holes use several
different response and detection techniques in operation.

V. DISCUSSION AND LIMITATION

There are several challenging issues with the white hole
approach, many of them are our future work.

White hole dissuasion vs. attraction: Attackers may fin-
gerprint the existence of white holes by observing that almost
all IP/ports in the protected network segment are responsive to
connect attempts, which can be a direct indicator of a potential
probe monitoring system [34]. However, rather than this being
a problem, we think it actually provides stronger motivation
for adoption of the technique by a wider audience. The white
hole effectively masks the legitimate network as a potential
low interest address segment rather than a high interest target.
We also observe a cumulative effect as more address spaces
employ white holes in their networks, which further aids in
disrupting malware propagation based on importance scan-
ning. That is, U increases, and the probability of β decreases.
Alternatively, white hole owners can also configure their
response strategy to closely mimic real network distribution
and operation with the intent of making the white hole space
operate with characteristics similar to a legitimate network
[35]. Thus, malware may hardly fingerprint the existence of
white holes. Here the intent is to construct a network that
will produce a higher than average attraction from importance-
scanning malware, which can be used both the better study
the malware attack strategies, and to deploy countermeasures
such as a LaBrea system to impede the malware’s progress.
In addition, by opening originally unused IP/port space, it can
efficiently distract and decrease attacks on the real IP/port
space (where real hosts and services reside), a similar effect
as showed in Openfire [33]. We decide to leave a deep
study on dissuasion and attraction effects for future work and
plan to employ game theory to study the best strategy of
using/deploying white holes.

Distributed deployment strategy: When we deploy multi-
ple white holes on the Internet, we could employ strategies
to deploy the distribution according to our real vulnerable
distribution. We plan to study the effect of distribution of
white holes in the future (similar to the study in [11] for worm
monitors).

Scalability: Existing techniques such as [23], [25] demon-
strate positive progress on deploying large number of VM-
based honeypot. The simple and stateless design of role player
also shows positive potential. We keep most of the components
simple which aids in the adoption cost, and believe scalability
is not a significant issue. We hope to validate both assumptions
in the future.

Attack tolerance: Malware may collect distribution infor-
mation using approaches other than sampling, e.g., through

address harvesting (SSH, Email, IM, etc.), other channel/out-
of-band, to fingerprint live (even vulnerable) hosts. However,
these approaches are much slower and harder than scan-
ning/sampling, and they are not easy to achieve the whole
picture of the Internet. Second, smart evasive malware, such
as VM detection [36], honeypot-aware [37], or traffic learning,
may identify whether they are within a white hole or not.
Of course, future studies of the defense-attack interplay are
needed in this arms race. However, in the sampling phase,
the primary target of the importance scanning attack is to be
stealthy to avoid detection. Honeypot-aware techniques [37]
will involve more anomaly clues and yield higher risk of being
detected.

LaBrea Resistance: Malware may eventually adapt to
detect and escape tarpit mechanisms. That is, instead of
achieving sustained sticking TCP malware, we should assume
we can only tarpit for a certain time. We plan to do simulations
in the future to find out the effect of different tarpit capabilities.
We should keep in mind that besides LaBrea-like tarpit, we
have several other alternate defense choices one could employ,
such as address blacklisting, automatic signature generation (a
taxonomy on defense techniques is in [38]). Finally, there is
a debate on the legacy of using LaBrea-like tarpit technique
[19], which is a non-technical issue out of our scope.

We should acknowledge that our proposed white hole strat-
egy is a first step toward addressing emerging network-aware
malware propagation strategies, and is a non-trivial component
to design and deploy, depending on the depth of features one
would want to incorporate. However, we also note that the key
features envisioned in white holes represent an integration of
existing techniques. Furthermore, the launching of a successful
importance-scanning malware is also a non-trivial activity.

Finally, it is worth noting that although we show white holes
are very effective in misleading and defeating importance-
scanning malware propagation, they can also protect networks
from regular scanning malware (similar to the effect in [33]),
as well as serve traditional honeynet functionalities.

VI. CONCLUSION

In this paper we propose the design of white holes as a
method to respond to a new generation of malware propagation
strategies that seek to learn the address distribution statistics of
the networks they are attacking. We propose the use of white
holes to produce anomalous densities that are characteristic of
naive honeynets that will be ignored by malware, in the spirit
of hiding trees within a forest. We can also use the detection
capabilities within the white hole to dynamically protect co-
located legitimate addresses.

We also suggest that the density analysis of importance-
scanning malware can be used against them, and propose the
incorporation of LaBrea-like mechanisms into a white hole
that tries to mimic dense legitimate networks. We observe that
such an approach can rapidly trap the importance-scanning
malware to a far greater degree than other propagation strate-
gies. Our current assessment of this approach motivates us to

continue our study of more strategies to actively mislead and
defeat future network-aware malware.

ACKNOWLEDGMENT

We are thankful to Linda Briesemeister, Chuanyi Ji and
Vinod Yegneswaran for their helpful discussions and com-
ments on an early version of this work. This material is based
upon work supported through the U.S. Army Research Office
(ARO) under the Cyber-TA Research Grant No.W911NF-06-
1-0316 and Grant W911NF0610042, and by the National
Science Foundation under Grants CCR-0133629 and CNS-
0627477. Any opinions, findings, conclusions or recommen-
dations expressed in this material are those of the author(s)
and do not necessarily reflect the views of U.S. ARO or the
National Science Foundation.

REFERENCES

[1] Z. Chen and C. Ji, “A self-learning worm using importance scanning,”
in ACM CCS Workshop on Rapid Malcode (WORM’05), 2005.

[2] S. Staniford, V. Paxson, and N. Weaver, “How to 0wn the internet in
your spare time,” in 11th USENIX Security Symposium (Security’02),
2002.

[3] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham, “A taxonomy
of computer worms,” in First ACM Workshop on Rapid Malcode
(WORM’03), 2003.

[4] C. C. Zou, W. Gong, and D. Towsley, “Code red worm propagation
modeling and analysis,” in 9th ACM Conference on Computer and
Communication Security (CCS’02), 2002.

[5] C. Shannon and D. Moore, “The spread of the witty worm,” IEEE
Security and Privacy Magazine, 2004.

[6] M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D. Watson, “The
internet motion sensor: A distributed blackhole monitoring system,” in
Network and Distributed System Security Symposium (NDSS’05), 2005.

[7] C. Zou, L. Gao, W. Gong, and D. Towsley, “Monitoring and early
warning of internet worms,” in ACM Conference on Computer and
Communications Security (CCS’03), 2003.

[8] J. Wu, S. Vanagala, L. Gao, and K. Kwiat, “An effective architecture and
algorithm for detecting worms with various scan techniques,” in ISOC
Network and Distributed System Security Symposium (NDSS’04), 2004.

[9] Y. Pryadkin, R. Lindell, J. Bannister, and R. Govindan, “An empirical
evaluation of ip address space occupancy,” USC/ISI, Tech. Rep. ISI-TR-
598, 2004.

[10] “Distributed intrusion detection system (dshield),”
http://www.dshield.org.

[11] M. A. Rajab, F. Monrose, and A. Terzis, “On the effectiveness of
distributed worm monitoring,” in 14th Usenix Security Symposium
(Security’05), 2005.

[12] C. C. Zou, D. Towsley, W. Gong, and S. Cai, “Routing worm: A
fast, selective attack worm based on ip address information,” in 19th
ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed
Simulation (PADS’05), 2005.

[13] M. Rajab, F. Monrose, and A. Terzis, “Fast and evasive attacks:
Highlighting the challenges ahead,” in 9th International Symposium on
Recent Advances in Intrusion Detection (RAID’04), 2006.

[14] S. Staniford, D. Moore, V. Paxson, and N. W. Proc, “The top speed of
flash worms,” in ACM CCS Workshop on Rapid Malcode (WORM’04),
2004.

[15] Z. Chen, L. Gao, and K. Kwiat, “Modeling the spread of active worms,”
in IEEE INFOCOM’03, 2003.

[16] V. Yegneswaran, P. Barford, and D. Plonka, “On the design and utility of
internet sinks for network abuse monitoring,” in Symposium on Recent
Advances in Intrusion Detection (RAID’04), 2004.

[17] D. Moore, “Network telescopes: Observing small or distant security
events,” in 11th USENIX Security Symposium (Security’02), 2002.

[18] Z. Chen and C. Ji, “Measuring network-aware worm spreading ability,”
in IEEE INFOCOM’07, 2007.

[19] “Labrea tarpit project,” http://labrea.sourceforge.net/.

[20] U. Shankar and V. Paxson, “Active mapping: Resisting nids evasion
without altering traffic,” in IEEE Symposium on Security and Privacy
(Oakland’03), 2003.

[21] E. Cooke, M. Bailey, F. Jahanian, and R. Mortier, “The dark ora-
cle: Perspective-aware unused and unreachable address discovery,” in
3rd Symposium on Networked Systems Design and Implementation
(NSDI’06), 2006.

[22] N. Provos, “A virtual honeypot framework,” in 13th USENIX Security
Symposium (Security’04), 2004.

[23] M. Vrable, J. Ma, J.Chen, D. Moore, E. Vandekieft, A. Snoeren,
G. Voelker, and S. Savage, “Scalability, fidelity and containment in the
potemkin virtual honeyfarm,” in ACM SOSP’05, 2005.

[24] W. Cui, V. Paxson, N. Weaver, and R. H. Katz, “Protocol-independent
adaptive replay of application dialog,” in 13th Annual Network and
Distributed System Security Symposium (NDSS’06), 2006.

[25] W. Cui, V. Paxson, and N. Weaver, “Gq: Realizing a system to catch
worms in a quarter million places,” ICSI, Tech. Rep. TR-06-004, 2006.

[26] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan, “Fast portscan
detection using sequential hypothesis testing,” in IEEE Symposium on
Security and Privacy (Oakland’04), 2004.

[27] N. Weaver, S. Staniford, and V. Paxson, “Very fast containment of
scanning worms,” in 13th USENIX Security Symposium (Security’04),
2004.

[28] M. Locasto, J. Parekh, A. Keromytis, and S. Stolfo, “Towards collabo-
rative security and p2p intrusion detection,” in 2005 IEEE Workshop on
Information Assurance and Security, 2005.

[29] V. Yegneswaran, P. Barford, and S. Jha, “Global intrusion detection
in the domino overlay system,” in Network and Distributed Security
Symposium (NDSS’04), 2004.

[30] Z. Chen and C. Ji, “Optimal worm-scanning method using vulnerable-
host distributions,” International Journal of Security and Networks
(IJSN), special issue on “Computer and Network Security.”, 2006.

[31] G. Gu, M. Sharif, X. Qin, D. Dagon, W. Lee, and G. Riley, “Worm detec-
tion, early warning and response based on local victim information,” in
20th Annual Computer Security Applications Conference (ACSAC’04),
2004.

[32] H. project, Know your enemy: Learning about Security Threats. Pearson
Education, 2004.

[33] K. Borders, L. Falk, and A. Prakash, “Openfire: Opening networks to
reduce network attacks on legitimate services,” University of Michigan,
Tech. Rep. CSE-TR-517-06, 2006.

[34] J. Bethencourt, J. Franklin, and M. Vernon, “Mapping internet sensors
with probe response attacks,” in 14th USENIX Security Symposium
(Security’05), 2005.

[35] S. Sinha, M. Bailey, and F. Jahanian, “Shedding light on the config-
uration of dark addresses,” in ISOC Network and Distributed System
Security Symposium (NDSS’07), 2007.

[36] T. Holz and F. Raynal, “Detecting honeypots and other suspicious
environments,” in Sixth Annual IEEE Systems, Man and Cybernetics
(SMC) Information Assurance Workshop (IAW’05), 2005.

[37] C. C. Zou and R. Cunningham, “Honeypot-aware advanced botnet con-
struction and maintenance,” in International Conference on Dependable
Systems and Networks (DSN’06), 2006.

[38] D. Brumley, L.-H. Liu, P. Poosankam, and D. Song, “Design space
and analysis of worm defense strategies,” in 2006 ACM Symposium
on Information, Computer, and Communication Security (ASIACCS’06),
2006.

