niermeaiiona

April 12, 2007
Highly Predictive Blacklists
Jian Zhang and Phillip Porras
first.lasthame@sri.com
SRI International
Johannes Ullrich
SANS Institute
T~ This material is based upon work supported through the U.S. Army Research Of-

" S
/7 7 TN NN

fice under the Cyber-TA Research Grant No. W911NF-06-1-0316. The views ex-
International/ pressed in this document are those of the author(s) and do not necessarily repre-

sent the official position of the sponsor.
Computer Science Laboratory e 333 Ravenswood Ave. e Menlo Park, CA 94025 e (650) 326-6200 e Facsimile: (650) 859-2844



Abstract

We propose a radically different approach to source additasklist formulation, which we
call highly predictive blacklistingWe present a probabilistic attacker ranking algorithm for
blacklist formulation for use in centralized collaboratilog sharing infrastructures, such
as the DShield.org security log repository. Our objectsradt simply to identify a global
list of prolific attackers, which is among the most widely dis¢rategies today. Rather, we
construct a custom blacklist per contributor that reflelsésrost probable set of attackers
that will attack the target contributor over a predictiomdaw that may last several days
into the future. Our attacker rank equation, inspired byemlpk document link analysis,
prioritizes candidate blacklist entries based on the haguently they are observed by
other peer contributors who share significant attackerlapawvith the target blacklist user.
Through an examination of real DShield datasets we condootrgarative assessment of
the highly predictive blacklist strategy versus three cetimg blacklist formulation meth-
ods. Our results show that highly predictive blacklist exsticonsistently yield much higher
attacker hit rates for the vast majority of contributorshia tepositories. In addition, the hit
rate quality of these blacklists can last multiple days thi future. We discuss a practical
implementation of our highly predictive blacklist algdwib, which we have posted to the
DShield.org website for use by DShield log contributors.



Contents

1 Introduction 2
2 TheBasicsof Source Address Blacklisting 5
3 Toward a Predictive Blacklisting Strategy 7
4 A Common-Source-Based Address Scoring Algorithm 10
4.1 Basic Scoring Algorithm . . . . . . .. .. ... oo 10
4.2 FromBasicto Full Algorithm . . . . . . ... .. ... ... ....... 17
4.3 Complexity Analysis . . . . . . . ... . . . 81
5 Comparative Analysis of Blacklisting Strategies 21
5.1 Hitslmprovement . . . . . . . . ... 22
5.2 Prediction of New Attacks . . . . . ... ... Lo 25
5.3 Performance Consistency . . . . . . . . .. ... ... 26
5.4 BlacklistLength. . . . . . . ... ... ... 82
5.5 Training and Prediction Window Sizes . . . . ... ... ... ..... 28
6 Examining Selection Strategies for Final Blacklist Publication 31
7 TheDShied Implementation 36
8 Conclusion 38
Bibliography



Chapter 1

| ntroduction

For nearly as long as we have been detecting malicious @diivhetworks, we have been
compiling and sharinglackliststo identify and filter the most prolific perpetrators. Source
blacklists are a fundamental notion in collaborative nekyarotection. Many blacklists
focus on a variety of illicit activity. Network and email agdss blacklists have been around
since even the earliest stages of the Internet [5, 16]. Hewes the population size and
personal integrity of Internet users have continued to groimverse directions, so too has
grown the popularity and diversity of blacklisting as a &gy for self-protection. Recent
examples include source blacklists to help networks detedtblock the most prolific port
scanners and attack sources, SPAM producers, and phisteagte name a few [6, 7, 15].
Today, sites such as DShield.org not only comgligbal worst offender lists6GWOLS)

of the most prolific attack sources, they regularly post fakwarsable filters of these lists
to help the Internet community fight back [15]. DShield resamts a centralized approach
to blacklist formulation, with more than 1000 contributgoviding a daily perspective
of the malicious background radiation that plagues thermete[14, 18]. The published
GWOL captures a snapshot of those class C subnets whosessekliigave been logged
by the greatest number of contributors. Another commontijoeaés for a local network
to create its owrocal worst offender lis(LWOL) of those sites that have attacked it the
most. LWOLs have the property of capturing repeat offenttess are indeed more likely
to return to the local site in the future. However, LWOLs agedefinition completely



reactiveto new encounters with previously unseen attackers. Onttiex band, while the
GWOL strategy has the potential to inform a local network ighty prolific attackers, it

also has the potential to provide a subscriber with a lisdolresses that will simply never
be encountered.

We propose a radically different approach to blacklist folation in the context of
large-scale log sharing repositories, such as DShield. objective is to construct a cus-
tomized blacklist per repository contributor that refletis most probable set of addresses
that may attack the contributor ovempaediction windowthat may last several days. We
refer to our algorithm as thkighly predictive blacklisfHPB) strategy. Under the HPB
strategy, for every contributor, we enumerate all sourdagmorted attackers and assign
each of them a ranking score relative to its probability ta@t the contributor in the fu-
ture. The ranking score is based on observation of the péatiattacker’s past activities, as
well as the collective attack patterns exhibited by all otackers in the alert repository.
This is another key difference between our HPB algorithmtaadther blacklist strategies.
In the compilation of GWOL and LWOL or their like, each blaigklentry is selected solely
based on its own attack history. In contrast, our HPB styatakes a collective approach.
HPB attacker selection is influenced by both an attackeris attack patterns and the full
set of all attack patterns found within the dataset. In paldir, we consider the correla-
tions among the contributors introduced by the collectibattackers, i.e., the amount of
attacker overlap between each pair of contributors. Ouwkimgnscore cares not only how
many contributors have reported the attacker but also whe tpe reports. It favors attack-
ers reported by many contributors that are also correldtade(many common attackers)
with the contributor under consideration. The choice oftdbuator correlation for use in
our collective attacker ranking algorithm is inspired bgert work of Katti et al. [9].

We tested our HPB strategy using more than 600 million D8Hag entries produced
by more than 1000 independent contributors from April toeJ2806. We generate HPBs
using DShield datasets and contrast perfornamce to thadroésponding GWOLs and
LWOLs. Our results show that for most contributors (moretB@%), HPBs entries exhibit
much higher hit counts over a multiday prediciton windownttmeth GWOL and LWOL.
In the best case, one HPB of length 200 successfully pretlit®® attacks in comparison



to only two addresses from the GWOL. We further compared HRB ahybrid blacklist
consisting of half GWOL and half LWOL. Our experiment showsirailar result: the HPB
algorithm exhibits a higher hit count for most of the conitidirs. Our experiments also
show that HPB’s performance is consistent over time, ansktlaglvantages remain stable
across various list lengths and predict windows.

Our contributions are the following. We present an alteveadpproach to blacklist for-
mulation, which is substantially different from that of thell-established worst offender
list strategy. We view the amount of hits on the blacklist asadditional metric to quan-
tify the degree to which a given blacklist is exercised intpeting a site from unwanted
connections. We propose a collective approach for rankttagkers that considers not
only individual attackers’ past activity but also the aktgatterns shown by the collection
of attackers. To compute these rankings, we present a ngs&ns based on Google's
PageRank [3]. We also propose the use of various attackerigemetrics to perform
final blacklist entry selection and present a practical anpntation of our highly predic-
tive blacklist algorithm, which we have now posted to the 2&hwebsite for use by all
DShield log contributors.

This technical report is organized as follows. We summaciz@mon network ad-
dress blacklisting practices in Section 2. In Section 3 was@nt the general intuition of
our approach, and discuss how it differs from traditionathods of blacklisting. Sec-
tion 4 presents the details of our predictive score algarjtand Section 5 presents our
experimental results on extensive assessments of HPBassvetser competing blacklist
generation strategies. We suggest methods for generafinglalacklist from HPBs by
down-selecting using various attacker severity metricSdntion 6. Section 7 describes the
DShield implementation of our HPB system, and Section 8 sariz®s our key conlusions.



Chapter 2

The Basics of Source Address
Blacklisting

Today, source address blacklisting a set of known-bad IPeadds is a common tech-
nique applied to defend a given network from the worst of tloestv Different approaches
are used to compile these blacklists. Most often, such hitaskare either based on lo-
cal data (e.g., data from an Intrusion Detection System D@8 they use data collected
from larger sets of sensors. More recently, researchers peoposed peer-based attack
sharing strategies to create fast reaction blacklistsrttight help in combating malware
epidemics [13,17].

Blacklists derived from local data are inherently reactivethat they cannot include
sources that the local site has not yet encountered. Logeklidting relies on the assump-
tion that it is possible to identify reconnaissance agtjaind to then block the sources of
such activity before they are able to launch actual attatkis may work in some cases, but
in many cases the attack is launched from a different sotwae the source of the probes,
or no probing takes place at all (an attack is launched hlirsgich as in the case of MySQL
Slammer [4]). Even though these sources that launch thekattay have been seen by
other networks, they are new to the particular local netwokkreactive local blacklist,
therefore, would not be able to defend against them.

One may alleviate this problem by using global blacklistevéel from data supplied



by a large set of contributors across the Internet. A comnpumaach to global blacklist
formulation is to simply populate the blacklist with the mpsolific offenders, i.e., sources
that have attacked the greatest number of targets. Howtbiestrategy may miss certain
significant attackers that prefer to attack the same settofanks that have been proven to
provide vulnerable hosts in the past. These attackers areenessarily very prolific, as they
focus on the known vulnerable networks. The particularcktanay change, but attackers
will probe the same networks as new vulnerabilities areripe@ted into the attacker’s tool
set. This behavior is in particular common in bots. Botsdgfy include a range of attack
tools that are controlled from a central location, like a€I&rver or web server. With any
new tool made available to the bot, the same networks tend tedcanned using this new
vulnerability.

More importantly, significant pragmatic limitations arén@ment in all source address
blacklisting strategies. Packet filtering devices are édlbold only a limited number of
rules. Depending on the device, this filter set size may rdraye a few dozen to a few
hundred. Thus, the cost of blacklist filters is not just meadun compute cycles and the
potential for accidental blocking of good traffic, but in thpportunity cosin exhausting
the firewall filter set with entries that are unlikely to be exged. The central goal of our
highly predictive blacklist system is to provide a filter geat will be exercised with much
higher probability than other contemporary blacklists le/@imending the aforementioned
problems.



Chapter 3

Toward a Predictive Blacklisting
Strategy

With today’s wide deployment of Internet sensors and collative log repositories, there
is greater potential than ever to develop blacklists thdy fprovide a global and adaptive
perspective of emerging attack sources. This richnesstiptavides not only the founda-
tion to produce an effective blacklist, but to open a new veathink about how blacklists
might be formulated.

The problem of formulating blacklists has certain simtiato therecommendation sys-
temproblem. Recommendation systems have been intensivaliedtand widely adopted
by many commercial websites [1, 2,11, 12]. A website conspilecollection of its users’
activities such as their purchase or browsing behaviorge rehommendation system then
processes this data set and predicts each individual Uséui® activity. The predictions
are based on both the individual user’s history and the peées induced by the activities
of the whole collection of usersThe prediction is presented to the user as a recommen-
dation or is used by the website to prepare resources fomtigmted activity. A typical
recommendation system can be found on Amazon.com, whei@vites suggestions, such
as “users who have purchased book X also find book Y highly aljug’

Both blacklist-formulation systems and recommendatiostesys depend on history
data to make predictions. However, the traditional way ofegating a blacklist does not



utilize the full information in the history data. For exaraplGWOL assumes the more
prolific the attacker, the more likely it will attack in thetfwe. This prediction uses only
information about the particular attacker, i.e., its tardigersity. It does not consider the
patterns introduced by the other (possibly similar) aask

Suppose we have a collection of history data on the attaclderbg a large set of
sources. Consider two attackets and A, in this collection that both attacked 20 targets.
Our task is to assist network in deciding which of the attackersi; or Ay, C' should
choose to block with higher priority. With the traditionaMEL approach, because the
two sources attacked the same number of targets, we witl tiheen equally. Such deci-
sion making does not fully consider the information corgdiin the data collection. If we
utilize the full information, we may be able to make a moresliigent decision. For ex-
ample, lettargets(A;) denote the set of targets attackedAdyandtargets(As) the set of
targets attacked byls. Let us assumenrgets(A;) andtargets(As) have no intersection.
Suppose after examining the collection of attack data, wetfiat many sources that at-
tacked some networks imrgets(A;) also came t@ but very few that attacked networks
in targets(As) hit C. In other words,C' shares many common (overlap) attackers with
networks intargets(A;) but not those inargets(As). A recommendation system that
utilized this information would then suggest tliatput higher priority on4; than A,.

Therefore, similarity among the targets determined byrtb@inmon attackers can be
as useful in making blacklists as the individual attackerig history. We are interested
in the relationship between target netwotksandY in the form of “many attackers who
target X often also target™”. Note that this relationship is transitive. L&t ~ Y denote
the attacker overlap relationship betwe€erandY . If X ~ Y andY ~ Z holds, then when
we formulate a blacklist fo#Z, we assert that an attacker who come&tshould be given
some favor comparing to an attacker that has no connectittmawi

We use a graph to represent the above overlap relationtliieg’s-” relationship) among
networks. An attacker’s activity can be modeled as a randaik @hrough our overlap
relations graph. Using the attacker’s history and such damnwalk, we explore a new
scoring system for selecting entries for customized coutoir blacklists. For each attacker
and each target network, the system produces a score thrapisrfional to the probability



estimation of the attacker attacking the network. The bisicfor a network then consists
of the attackers that have the top scores for that network.



Chapter 4

A Common-Source-Based Address
Scoring Algorithm

In describing our Highly Predictive Blacklisting algonithfor formulating source address
blacklists, we start with a basic algorithm. Although itkacconsideration for certain de-
tails, the basic algorithm carries the essence of our HRBesty. We then extend the basic
algorithm to a full algorithm by adding the considerations the omitted details. Finally
we briefly discuss the complexity of our algorithm.

4.1 Basic Scoring Algorithm

The heart of our blacklisting system is the scoring algamithin formulating a blacklist
for a contributor, it assigns scores to each attacker tleapeoportional to our estimation
that the attacker will attack the contributor. Here, ateaskrepresent class C addresses.
We will use the terms “attacker” and (attack) “source” in aterchangeable way. The
contributors supply data to the log repository. They arevibéms of the attacks reported
in the repository. We will also use the terms “contributoridd'victim” interchangeably.
We uses andwv to denote the source and the victim of an attack, respegti@ir algorithm
generates a customized blacklist per contributor (victM# useR*(v) to denote the score
for attackers with respect to a victim (blacklist consumer) R*(v) is a sum of two ranking

10



scores:RP*(v) andRI*(v). RP*(v) is an estimation of’s attack probability given 1}'s
past activities involving other victims, and 2) information similarities among victims
compiled over a collection of attack dat&/*(v) is the estimation of’s attack probability
based ons’s previous activity involving onlys itself. We first describe how we compute
RP*(v) and then we continue to the calculationf*(v).

It has been shown that there are correlations among attatikngi[9]. In a collection
of Internet-scale attack activities, we often can see thaal the attack victims are equal.
For some pairs of victims, attacks that targeted one viatind to also attack the other. For
other pairs, there is no such relationship. We refer to tlegbaictims in the former case
ascorrelated victims Among the correlated pairs of victims, the strength of elation
may differ from pair to pair. We illustrate this using a rungiexample in Table 4.1. We
will use this example throughout the description of our eyst

(5] U9 U3 Vg Vs
S1 X X
59 X
s3 | X | X X
S4 X | X
S5 X
Sg X X
S7 X

Table 4.1: Attack Table

In this example, we have five victims,(to v5) and seven attack sources (o s7).
We will refer to Table 4.1 as aattack table The rows of the table represent the sources,
and the columns represent the victims. An “X” in an attacKeatell indicates that the
corresponding source has reportedly attacked the comdspp victim. Victims may be
attacked by multiple sources. For a pair of victimsandv;, the set of sources that attack
v; may overlap with the set of sources that attagk For now, we will treat the amount
of such overlap as the strength of correlation betweenmgti; andv;. (This is simply
for illustration. Our algorithm uses a value modified frontiswoverlap to indicate the

11



correlation strength, which we will discuss later.) Formegéde, v; andv, may be said to
share strong correlation (two overlaps) relativet@andvs andvs who share zero overlaps.

To estimate probabilities of which an attacker may attackctin in the future, it is
natural to consider the correlations among the victims.uiironning example, although
ands; have attacked the same number of victims, from the viewmafint, we can make
the estimation that, is more likely to attack thar;, becauses, has attacked-, which
is closely correlated withr;. On the other hands; attackedvs, which has no correlation
with v;. For better estimation of the attack probabilities, one s information beyond
“direct” correlation. For example, consider the sousgand compare it te;. Both sources
attacked only one victim. None of their victims have a catieh withv,. However, forvy,
s5 ands7 are not equal. One may view the correlation dsaasitiverelationship. Notice
thatv, correlates withy;, andwvs correlates withy,. A pathvs ~ vy ~ v connectss; with
v1. Using this form of reasoning, one can estimate thas more likely to attacks;, than
S7.

We model the correlation relationship between victims byoaelation graph The
correlation graph is a weighted directed graph- (V, £/). The nodes in the graph are the
victims, i.e.V = {v;,v,...}. There is an edge from nodeto nodev; if v; is correlated
with v;. The weight on the edge is proportional to the strength sfcbirelation. Figure 4.1
shows the correlation graph for our running example. (Wé eifficuss how we obtain
the edge weight later.) We can use the correlation graph tereatimations on attack
probabilities. Suppose we have an estimation on soslsgerobability of attacking victim
v;. Following the outgoing edges of, a fraction of this probability can be distributed to
the neighbors ob; in the graph. Each neighbor receives a share of this pratyathiht is
proportional to its strength of correlation with (i.e., proportional to the weight of the edge
from v; to that neighbor.) Supposg is one of these neighbors in the correlation graph. A
fraction of the probability received hy; is then further distributed, in the similar fashion,
to its neighbors. The propagation of probability continuesil the estimations for each
victim reach a stable state.

Such a probability-propagation process can be simulateddrapdom walk on the cor-
relation graph: a source walks on the correlation grapmgyfsiom one node to another by

12



Figure 4.1: Correlation Graph of Our Running Example

following the edges in the graph. When at a node, the sourceses an outgoing edge to
follow with a probability proportional to the weight on thatige (i.e., proportional to the
strength of correlation between the two victims connectgdhle edge). Similar types of
random walk have been applied in other probability propagaénd estimation systems,
for example, Google's PageRank [3]. The PageRank systeks rmabpages using a score
that is related to the probablity that a particular webpags tve visited. Based on the
PageRank system, we develop an algorithm to estimate gitablabilities given a victim
v and an observed set of attackers. The estimates then de¢etingi value ofR P*(v) for
each attackes in the set.

We first give a brief description of the PageRank system. B{:) be the ranking
score for webpage Let LT'(i) be the set of webpages that contain links to pad@enote
by N L(7) the number of outgoing links on pageThe PageRank score is determined by

1
PR(i) = (1 —a) + (szE;(i) WPR(])
wherea < 1 is a damping factor that decides how far the probability framode can
propagate.
We modify this ranking function to estimate the attack ptuliges. Let P*(v) be an
estimate proportional to the total probability thatttacksv. Let W;; be the correlation

strength from victimy; to v;. We define

13



P*(v;) = B*(v;) + (J/Z Wij - P*(vj) 4.2)

whereB*(v;) is an initial estimation based on whetheaattacksy; in the attack table. Given
a fixed sources, we will have an equation in the same form as Eq. 4.1 for evatynv v;.
The sets ofP*(v;) and B*(v;) form vectors, which we denote IB* andB* respectively.
(We use boldface for vectors and matrices and normal fonsdafar values.) The set of
equations for different; can then be expressed in a matrix form:

P’ = B + aWP? (4.2)

Given the vectoB*® and the matriXW, the system of linear equations in Eq. 4.2 can be
solved to obtain the valug?® (v;). The source’s first score for victimw;, RP*(v;), is then
defined to beRP*(v;) = P*(v;) — B*(v;). (We needRP?(v;) to be a score that predicts
future attacks.B*(v;) represents attacks in the past. We therefore reni$\{@;) from
P?(v;) to obtain the ranking scorBP*(v;).) For each source, we will have a system of
linear equations in the same form as Eqg. 4.2. Solutions to gggtem of equations give us
the corresponding source’s ranking scores for each vigtim

The vectorB* and the matriXW are two important components in Eq. 4.2. We now
describe how to construct them from the attack tables. Site;) reflects whether
attacksv; in the attack table, we can simply define it to be the following

1, if s attackedy;;
B%(0;) { if s attackedv;; 4.3)

0, otherwise

The entrylV; ; in matrix W reflects the strength of correlation between victinasd;.
For simplicity, in our previous illustration, we used the@mt of overlap between sources
that attackedy; and that attackead; as the measure of the correlation between the two
victims. We call this thesimple correlation Figure 4.2 shows a simple correlation matrix
for our running example. (We have five victims in the runningraple. Therefore, the
correlation matrix is & x 5 matrix. Entry(j,1) is the strength of correlation from victimn

toj.)

14



o = O N O
S == O N
O = O = O
S O == =
o o O o O

Figure 4.2: Simple Correlation Matrix of Our Running Exampl

The actual measure of correlation needs to consider mai$ad-or example, consider
the following two cases. In Case 1, victim sees attacks from 500 sources andgees 10
sources. Five sources attack bofrandv;. In Case 2, there are also five common sources.
However; sees 100 sources while sees 10. Although the number of overlapping sources
is the same in both cases, the strength of correlation isrdift. Because in the first case,
v; Sees more sources, it is expected that there should be meramvTherefore, the five
common sources in Case 1 should be equivalent to just one oanswurce in Case 2.
Similarly, if v; sees 100 sources buf sees five, and there are still five common sources.
These five common sources should be counted as 10 compatimgs®in Case 2.

We use a statistical measure to standardize the amount bapse Assume that there
are a total ofV sources. Letf; be the number of sources seendyyn; the number seen
by v;, andn;; the number of common sources. The probability #ptto see a source is
n; out of N. If v; andw; are statistically independent, among thesources seen by;,
we expect to see; - "WJ common sources. We define the standardization factaf) (o

be std(i, j) = n”,i_[v] , Which is essentially the ratio of the actual overlap overdkpected
overlap. Our standardized correlation is then obtaineddayirg the simple correlation
using the standardization factor, i.e. standardized tziioa between; andv; is std(i, j) -
n;j. Figure 4.3 shows the standardized correlation matrix fmmonning example.

The matrixW in Eq. 4.2 is obtained by normalizing the columns of the stadided
correlation matrix. In Figure 4.1, we show the correlatioagh for our running example.
The weight on the edge from nodeo nodej is the value of the entryj, i) in the matrix

W.

15



0 3.5 0 1.75
3.5 0 0.583 0.875

0 0.583 0 1.167
1.75 0.875 1.167 0

0 0 0 0

o o o o O

Figure 4.3: Standardized Correlation Matrix of Our Runnih@mple

So far we have described how to compute the sd@f&(v). Recall that a source
s's ranking score for a victim is the sum of two scoreRP*(v) and RI*(v). We now
continue to the computation @tI¢(v). RI*(v;) reflectss’s attack probability based on its
previous activities that target. We calculateR7°(v;) using a formula similar to Eq. 4.1.
In particular, we have

RI*(v;) = B*(v;) + aW;RI* (v;) (4.4)

The coefficientsiV;; reflects the probability that a previous attackervpfwill come
back. We calculate this value in the following way. LBt and T, be two consecutive
time windows. We estimaté/;; by the fraction of sources that attackedin T that also
attack inT%. Similar to B*(v;), B*(v;) reflects our observation ars previous attack on;.
Therefore, it can also be determined using Eq. 4.3.

With Eqg. 4.1 and Eq. 4.4, we can compute the two scd@té¥(v) and RI*(v), re-
spectively. Our final ranking score for sourgavith respect to victimv is thenR*(v) =
RP*(v) + RI*(v). We also described how the coefficients in the equations eateter-
mined. Putting these together, we have a basic system taattatkers. Our final system
is an extension of this basic system that incorporates metaleld considerations on the
sources’ past activities.

16



4.2 From Basicto Full Algorithm

The extensions discussed here were derived from our exygesein iteratively applying
our ranking system to the DShield repository. In doing so seaVered various patterns in
contributor log production that we now reflect into our scleem

The first extension is a modification of the vec®t(v;) in Eq. 4.1, which is defined by
Eq. 4.3. This definition considers whether a sow@dtacks victimv but does not reflect
when the attack happens. For example, when we predict aesssattack, we should take
into consideration the case in which the source’s last lattacurred yesterday from the
case where the attacker was last observed 10 days ago. lortherfcase, the attacker
may be still active while in the latter case, it may not. Toaeflthis, we modifyB*(v;) by
multiplying it with a decay factor* (v;) = 2%, wherek is the delta between the timg
last appeared and the start of the time window for which wa famake our prediction.

The second extension modifié (v;). We consider the number of times that sousce
has attacked, as well as the time when these attacks happened. Suppoadet attacks
to v;. Thei-th attack happened at timek;. Note that we consider the beginning of the
prediction time window as time zero. Since we are countingkdard into the history, we
put a minus sign in front of;. The new value of3%(v;) is thenB%(v;) = log(>4 27 k).

In the case where = 0 (i.e., s did not attacks in the past) we seB*(v;) to zero. Recall
that B*(v;) is an initial estimation based ars previous attack om;. Here we assert that
a source that has attacked 500 times in the past is not 5 tiraes pnobable to come back
(to the same victim) than a source that has attacked 100.tifesefore, in the new value
for B%(v;), we use a logarithmic form of the decayed sum instead of theitelf. This
reflects the observation that two very frequent attackeasesh quite close probability of
coming back.

Notice that we make different modifications& (v;) and B* (v;). We observed that an
attacker that has attacked victimmany times in the past is not necessarily more likely to
attack another victimy;. Therefore, we considered the number of previous attacks ion
formulating B* (v;), but not forB*(v;). It also shows that the amount of attack probability
derived from the number of past attacks does not propagdtss. i§ the main reason that
our final ranking score is a sum of two scores: one that iseélad the attack probability

17



propagated from other victims and the other focusing ondballattack probability.

Finally, we extend the attack table to include time inforioxat The entries in the basic
attack table are boolean values, indicating whether souattacked victinw. We use sets
as entries in the extended attack table, i.e., the set afkatfaom s to v that happened at
different times. Letl;; and 7}, be two entries in the extended attack talble When we
measure the attack overlap betwegrandwv,, we will include the intersection of the two
setsT;; andT;,. For example, with the basic attack tatlé&, if Ti? =T7F =1, weadd 1
to the attack overlap. With the extended attack table, we'Bdd 7;;| to the overlap. One
may construct the extended attack table using differeniugaaity. For example, the set
T;; may include every individual attack event. Alternativedpe may discretize the time by
hours and aggregate attacks (frento v;) that happened within an hour into a single attack
in T;;. Coarse granularity may be preferred because the attalekisabsed only to obtain
the correlation matrix, which then affects the valueR¥P*(v). A granularity at hourly
level is equivalent to asserting thatsifattacked victimg andj within one hour, the two
attacks are correlated. Otherwise, they are not. Becaubéspbne should not distinguish
individual attacks, but rather should use coarse granylatihourly or even daily intervals.

Applying the above extensions to our basic system, we olotairfinal source ranking
system. We summarize the whole system in Algorithm 1.

4.3 Complexity Analysis

Because our HPB algorithm is constructed from collectiohalert data, we need to go
through the data collection at least once. Hence, theravigyal the amount of complexity
that is linear to the size of the alert data. That isNétiata) be the number of alerts in the
data collection; we have a minimum complexity@fN (data)). Our discussion will focus
on other complexity incurred by the algorithm besides timgdr-time requirement.

We denote byV (s) and N (v) the number of sources and victims in the data collection,
respectively. Recall that victims are the contributors sugoply data to the alert collection;
N (v) is actually the number of such contributors. We can expéat) to be in the order
of thousands. Unfortunatelyy (s) is much larger and can be in the tens of millions. We
obtain the coefficients in Eq. 4.2 and Eq. 4.4 by going throtinghcollection of alert data

18



and doing simple accounting. For example, the weight ma¥ixused in Eq. 4.2 requires
the most work to construct. To obtain this matrix, we recarerng overlapped attack while
going through the alert data and then perform standardizathd normalization. The latter
steps require us to go through the whole matrix, which resniO (N (v)?) complexity.

Besides going through the data, the most time consumingistéye ranking process
is the computation that solves the linear equations in E2. 4t first glance, because
for each source, we have a linear system determined by Eq. 4.2, it seems thatesd
to solve N(s) linear systems. This can be expensiveNa&) is very large. A further
investigation shows that the solution to Eq. 4.2Tis- «W)~! - B® wherel is the identity
matrix. While B¢ is different per source, the term(I — aW) ! is the same for alk.
Therefore, we need to compute it only once, which requi?éd (v)?) time by brute force
or O(N (v)?37%) using more sophisticated methodd. [ BecauseB* is sparse, once we
have(I - «W) !, the total time to obtain the ranking scores for all the sesirand all the
victims isO(N (v) - N (data)). AssumingN (v)? is much smaller thaiV (data), the total
complexity to generate HPBs$(N (v) - N (data)). Note that this captures the complexity
to generate HPBs for all the victims. For a data set that amabillion records contributed
by a thousand sensors, generating a thousand HPBs onlyeegeiveral trillion operations
(additions and multiplications). This can be easily haddig modern computers. In fact,
in our experiments, withV(data) in the tens of millions andV(v) on the order of one
thousand, it takes less than 30 minutes to generate all tiBs ldR an Intel Xeon 3.6 GHz
machine.

19



Algorithm 1. Generate HPB for victin
HPB_GEN(BL_Length,v)

@ foreach source s

(2 RP* + RANK_SCOREL(V, S)
3) RI® + RANK_SCORE2(V, S)
(4) R® < RP*® + RI*

(5) Sorts in descending order according to their rank scBfe
(6) return BL_Length ofs with top R?

RANK_SCOREL(V,S)

@ Obtain attack overlap from the attack table;
(2) Generate the standardized correlation matrix;
3) Generate the final correlation matiy;

(4) ConstrucB*;

(5) Solve linear system in Eqg. 4.2;

(6) return RP*(v)

RANK_SCORE2(V,S)
(1)  EstimateV;;
(2)  CalculateB?;
3) Solve Eq. 4.4
4) return RI°(v)

20



Chapter 5

Comparative Analysis of Blacklisting
Strategies

To test our proposed HPB algorithm, we have conducted arpattexperiments using the
DShield.org firewall and IDS log repository. We examined Hecotion of approximately
600 million DShield records, collected from more than 1766tdbutors between April and
June 2006. The prerequisite for our HPB algorithm to produeaningful predictive results
is to have it first compute correlation relationship amorg ¢bntributors. In this sense,
HPB blacklist production is not applicable to contributevho have submitted very few
reports (DShield has contributors who hand-select cartidhs to the repository, providing
very few alerts from which to compute a correlation relasioip). We therefore exclude
those contributors who we find effectively have no correlativith the wider contributor
pool or simply have too few alerts to produce meaningful ltssuFor this analysis, we
found that we could compute correlation relationships {688 contributors.

In the experiments, we generate HPB using data for a ceitaggeriod and then test
the HPB on data from the time window following this period. \?#l the period used for
producing HPB thdraining windowand the period for testing thgrediction window In
practice, the training period represents a snapshot of ts racent history of the reposi-
tory used to formulate the HPB of a contributor who is theneextged to use the HPB for the
length of the prediction window. The sizes of these two wimgl@are not necessarily equal.

21



We will first describe experiments that use 5-day lengths@ih the training window and
the prediction window.

As a baseline for comparing the performance of the HPB metlveccompute its per-
formance relative to the standard DShield-produced GMlmaikt Offender List (GWOL) [15].
In addition, we compare our HPB performance to that of loaaisivoffender lists (LWOLS),
which we compute individually for all contributors in ourroparison set. For the purpose
of our comparative assessment, we fixed the length of aletboenpeting blacklist strate-
gies to exactly 200 entries. However, after we present ompesative performance results,
we will then continue our investigation by analyzing how damv size and blacklist length
affect HPB's predictive performance.

5.1 HitsImprovement

Data in the prediction window are used to test how many sasutltat are on a blacklist
actually hit the contributor. We call this tHgt number(#) for that blacklist. For each
contributor, a blacklist that produces a high hit numberaisl $0 provide stronger predic-
tive power than a blacklist that produces a lower hit numkég.compare the hit numbers
produced by our HPB algorithm to those of GWOL and LWOL over 088 DShield
contributors. The hit numbers of the three types of blatkNsry from contributor to con-
tributor. Table 5.1 lists the mean and median of the hit nusibger our 5-day prediction
window interval for our three competing blacklist stratsyi

Mean | Median
HPB 59 47

LWOL | 49 36

GWOL | 31 30

Table 5.1: Summary of Hit Numbers

We now break down the performance results of these thredlistastrategies on the
individual contributor. For each contributar, there is a hit number for HPB, GWOL,
and LWOL. LetHTPB (), HEWOL(y), and H WOl (v) be the respective hit numbers.

22



To compare HPB to another blacklist, we define two quantfbesach contributor. One
measure is theamprovement ValuélV), which we define as the HPB hit number minus the
hit number on the other list. That is, the IV over GWOL for admitor v is H7 7B (v) —
HEWOL(y), and the IV over LWOL isHTPB(v) — HEWOL(y), A positive IV means
HPB has produced a better hit number than the other listevehilegative IV means HPB
performs worse.

A second comparative measure is tHg Number Ratio(HR), which is simply the
ratio of an HPB hit number over the other blacklist hit numidesr example, the HR over
GWOL forwv is 71"(};:7(% If the other list hit number is zero we define HR to be the HPB
hit number, and if both hit numbers are zero we set HR to oneHRof value 1 means
the HPB predicts the same amount of hits as the other list. larfger the HR, the better
the HPB's prediction performance. In our experiments, we firat IV and HR differ from
contributor to contributor. We plot the distribution of #eevalues when comparing HPB to
the other blacklists.

In Figure 5.1, we compare HPB to GWOL. The left panel of therfgplots the dis-
tribution of the IV values for the 1088 contributors. Thexsarepresents IV values and
the y-axis represents the number of contributors that m®dhe corresponding IV. The
dash-dotted line indicates = 0 or no improvement, where anything to the left of this line
represents worse HPB performance. We see that for mosilmaons, the IV is positive.
HPBs have more hits than GWOL. The largest IV reaches 193.tH®icontributor, the
GWOL has very few hits while almost all sources in the HPB wetand to have attacked
in the prediction window.

The two panels on the right of Figure 5.1 plot the HR (ratio &fB% hit number over
GWOL's hit number) distribution. The distribution is hightkewed. Therefore, we sep-
arate the largest 5% of HR values from the rest of 95% and petwo sets of values in
different ways. The upper right panel shows the distributid the top 5% of HR values
in the histogram. (The dash-dotted line in this panel indisa = 1.) We see that for all
the contributors in this panel, HPB achieves an HR at leashéstthe HR of GWOL. The
largest ratio is 138. In the lower right panel, we plot the alative distribution function
(CDF) for the rest of the HRs. (Again, in this panel, the ddstted line shows = 1.) For

23



HPB v.s. GWOL Distribution (top 5%b)

400

60

350 40

\
L—
20
\
o]

CDF (Bottom 95%)

300

# of Contributors

250

200

150 f 100

# of Contributors

100

50
50

o 50 100 150
Improvement

o 2 4 6 8
Hit Number Ratio

Cumulative Percentage

Figure 5.1: Hit Number Comparison of HPB and GWOL

each value: of HR, CDF plots the percentage of HRs that is below he x-axis represents
HR values, and y-axis represents percentage. A point) on the CDF curve indicates that
there arey percent HRs that have values smaller thaOr there ard 00 — y percent HRs
with values larger thar.) From the CDF plot, we see that for only a very small percent-
age (less than 10) contributors, HPB performs worse than GWOr about 30% of the
contributors, HPB doubles the hit number. For half the dbuators, HPB improved the hit
number by more than 50%. For about 70% of the contributordB H& 20% more hits
than GWOL.

In Figure 5.2 we compare HPB hit numbers to those of LWOL. Ta& ére plotted
in the same way as in Figure 5.1. Overall, HPB demonstratesrfarmance advantage
over LWOL. The IV and HR values also exhibit similar distrilam. However, comparing
Figures 5.2 and 5.1, we see that HPB’s advantage over LWGOdt @slarge as its advantage
over GWOL. For example, from the CDF in the lower right parfdéfigure 5.2, we see that
at the 50% (median) level, the HPB has about 20% more hitslM&DL, less than the 50%
it achieved with GWOL.

In preparing this analysis, one apparent observation istikaGWOL and LWOL strate-
gies produce very complementary lists of attackers. Thdtyislefinition GWOL focuses
on prolific Internet-wide IP sweepers, while LWOL focusessmurces that have specifi-
cally concentrated their attacks (i.e., on the LWOL ownepanticular). Because the two

24



HPB v.s. LWOL Distribution (top 5%b)

0
£ 60 ‘
200 | ‘ =2 |
S 40
| =
S I
» O 20
S 150¢ S |
= = O
=2 o 2 4 6 8
= <5
S 100} > CDF (Bottom 95%)
&) T
ot £ 100
o [<5) |
H= 1<}
50} 2 I
o 50 |
=
=
o) g o
0 Iom roz?eme:to o 3 05 N 15 2
prov © Hit Number Ratio

Figure 5.2: Hit Number Comparison of HPB and LWOL

lists have different focuses, one may wonder whether HPBestdrms GWOL and LWOL
because HPB considered both types of sources while GWOL #@LLtarget only an
individual type.

We believe this is part of the reason that HPB has more piedigower. However, in
studying this question we find that the HPB algorithm producrich more than a naive
combination of GWOL and LWOL. To illustrate this point, wewm@ompare the hit num-
bers of our HPB method to that ofteybrid blacklist. Recall that for the purpose of our
performance assessment, we have set all blacklists to aléirgth of 200 entries. We now
consider a hybrid blacklist that is composed of the top 100es of the GWOL and fill
the remainder of entries with the top non-overlapping sesifcom the LWOL. Figure 5.3
plots the comparison of HPB against this new hybrid list. fiere shows that for most of
the contributors, HPB performs better than the hybrid list.

5.2 Prediction of New Attacks

One clear motivating assumption in secure collaboratiierd® strategies is that partici-
pants have the potential to prepare themselves from atthakshey have not yet encoun-
tered. We will say that mew attackoccurs when a contributor produces a DShield log
entry from a source that this contributor has never befguerted. In this experiment, we

25



HPB v.s. Hybrid Distribution (top 5%b)

<
450 S 60 \
400 | | 2 \
5 40
350 | S \
(%) O 20
S 300+t S [
= = O
2 250} — o 5 10
= <%}
8 200 } =y CDF (Bottom 95%)
ot £ 100 i
(=) L
° 150 g
100} 2 ‘
© 50 |
50 =
<
g2 o
° Impro erioent 100 3 ° 0-5 : 15 2
prov © Hit Number Ratio

Figure 5.3: Hit Number Comparison of HPB and A Hybrid Blaskli

show that HPB analysis provides contributors a potenti@réalict more new attacks than
GWOL. (LWOL is not considered, since by definitiondtly includes attackers that are
actively hitting the LWOL owner.) For each contributor, wenstruct two new HPB and

GWOL lists with equal length of 200 entries, such that noieathave been reported by
the contributor during our training window. We call thesstdiHPB-local (HPB minus lo-

cal) and GWOL-local (GWOL minus local), respectively. Higib.4 compares HPB-local
and GWOL-local on their ability to predict on new attack sms for the local contributor.

These hit number plots demonstrate that HPB-local prosdéstantial improvement over
the predictive value of GWOL.

5.3 Performance Consistency

The results in the above experiments all show that the HP&itthgn provides an increase
in hit number performance across the majority of all contidlos. We then ask the following
guestion: is the HPB predictive performance consistentifgiven contributor over time?
In this experiment, we investigate this performance coeiscy question.

We use a 45 days DShield data. We divide the 45 days into nine tindows,
Ty, Ty, ...,Ts. We generate blacklists from data in time wind@w ; and test them on
data inT;. For each contributos, we compare HPB with GWOL and obtain eight IV val-

26



HPB-local v.s. GWOL-local Distribution (top 10%)

0
700 S eol!
| =1
2 I
600 | S 40
o
S I
© 500 | © 20
k=] 1S I
= = O
2 400} o) 10 20 30
5 S DF (B %
8 300} = C (Bottom 90%o)
= £ 100
o [<5) |
** 200} <4
L I
50
100 | g |
=
o) g o
Im rosoement100 3 ° : 2 3
prov © Hit Number Ratio

Figure 5.4: HPB-local Predicts More New Attacks Than GWQ@tall

ues for windowZ to Ts. We denote themdVs(v) = {IVi(v), IVa(v),...IVs(v)}. We
then define a consistency index (Cl) for each contributof.Vi{v) > 0, we say that HPB
performs well forv in window i. Otherwise, we say that HPB performs worse. Cl is the
absolute value of the difference between the number of wisda which HPB performs
well and the ones in which HPB performs poorly, i€ (v) = abs(|{p € IVs(v) : p >
0} — {p € IVs(v) : p < 0}]), whereabs(z) is the absolute value af. (Note that we
focus on HPB's performance consistency in this experimé€t. a particular contributor,
HPB may perform well or worse. However, as long as it perforall fworse) for all the 8
windows, we say that it is consistent. Therefore, we uselikelate value in the definition
of CI. Being consistent does not necessarily mean that He8igis more hits.) Clearly, if
HPB has a consistent performance along time for contribut@¥(v) should be close to
8. Otherwise, if the performance of HPB flip-flops, its Cl valill be close to zero. Fig-
ure 5.5 plots the CDF of HPB'’s Cl values with different cobptitiors. We see that for more
than 80% of the contributors, HPB’s performance is extrgneehsistent. They all have
Cl value 8. For more than 90% of the contributors, HPB denratest fairly good consis-
tency. Only with very few contributors, the performancetstves back and forth. Further
investigation shows that flip-flop contributors involve essvhere HPB and GWOL have
hit numbers in very close proximity. In such a case, a smalhgke in hit number can switch
HPB from good to bad.

27



100
80
60
40

B _

0 2 4 6 8
Performance Index

Cumulative Percentage

Figure 5.5: Cumulative Distribution of Consistency Index

The consistency result is quite useful. It implies that gieefew cycles of computing
HPB and GWOL for a given user, we can provide an informed renendation for the user
as to which list he or she should adopt over a longer term. iShatir experiment suggests
that if HPB performed well in the past month, it will tend tontimue performing well over
at least several subsequent weeks. Therefore, the usersanaijt from HPB in this case.

5.4 Blacklist Length

In this experiment, we vary the length of the blacklists t&Be100, 200, 500, and 1000. We
then compare the hit numbers of HPB, GWOL, and LWOL. Becausd the experiments,
the IV and HR values for different contributors display damdistributions, we will simply
plot the medians of the hit numbers of HPB, GWOL, and LWOL when present the
results. In Figure 5.6, for each choice of list length, we i@ median of the hit numbers
for HPB, GWOL, and LWOL across the contributors. The reshtives that HPB has an
advantage for all choices of length value.

5.5 Training and Prediction Window Sizes

We now investigate how far into the future the blacklists wake good predictions and how
different training window sizes affect HPB's hit numbershelformer helps to determine

28



0.6
o Q -6- GWOL
< \ % LWOL
T 04
=
S
S
5 0.2
(&)
=
0
0 500 1000

Blacklist length

Figure 5.6: Hit Numbers of HPB, GWOL, and LWOL with Differeinéngths

how often we need to recompute the blacklist, and the laghasito select the right amount
of history data as the input to our system. The left panel glifé 5.7 shows the median
of the hit number of HPB, GWOL, and LWOL on day2, 3, ...,31 in a large prediction
window. All lists are generated using data from a 5-day wimgaior to the prediction win-
dow. We see that for all blacklists, the number of hits desweaalong time. HPB always
has an advantage during the whole prediction window. (Tiseaalip around day 5 because
the total number of attacks reported by DShield is signifigaiess on that particular day.
Nevertheless, HPB still performs better in this case.) Tigltmanel of Figure 5.7 plots
hit-number medians for five HPBs that are generated usimgrigawindows of size 2, 5,
10, 20, and 30 days. The hit numbers are obtained in a 5-daljcpom window. We see
that the hit numbers are roughly the same for HPBs generaiibdtraining windows of
different sizes. At first glance, this seems strange. Buiritd out to be a natural property
of our HPB algorithm. Two major factors affect the genematid HPBs. One is the cor-
relation pattern among victims (contributors). Previousky9] has shown that the victim
correlation patterns are quite stable. They remain the $an&long time. Therefore, the
correlation graph obtained from different training windomay be very similar. The other
more important factor is that we used an exponential decagtifon in computingB and
Bin Eq. 4.1 and Eq. 4.4. Attackers that have been dormant fayelotime periods will be
assigned extremely small scores and therefore are efictaxcluded from consideration

29



for HPBs.

25 60
£ 20 50
g € Jola
I I 30
S kS
10
kS 8 20
=] =]
[<B] 5 [<B]
= = 10
0 (0]
(0] 10 20 30 (0] 10 20 30
Day in Prediction Window Training Window Size (days)

Figure 5.7: Effect of Training Window and Prediction Wind&ize on HPB’s Hit Number

30



Chapter 6

Examining Selection Strategies for
Final Blacklist Publication

No matter what the blacklist formulation strategy, one nrasbgnize that most perimeter
boundaries will have a finite filter set size. In practice weeare that these filter sets may
range from a few dozen to several hundred entries. Thus, déeding which entries to in-
corporate into a perimeter defense, the opportunity cashtmrporating poor-performing
rules can be significant. Poor-performing rules may haverséinterpretations, depending
on one’s perspective. Poor-performing rules may includiesrthat exhibit

poor timing: filtering rules that are inserted well after an attacker tebtime to saturate
the network with unwanted communications

poor hit rate: rules that identify malicious sources that are rarely ifrecountered by
the blacklist user

low severity: rules that filter sources whose traffic patterns would suggesign rather
than malicious communications (e.g., selecting to filtebvegawlers rather than
sources that are actively targeting known malware ports).

With respect toorly timedblacklist entries, worst offender lists generally suffiemf
the fact that a source does not achieve candidacy into therlid it has produced a suf-
ficient mass of communication. GWOL rules have the tendeadgdorporate only those

31



sources that have already achieved mass proliferation. ILs\&De particularly limited by
poor timing, as they are entirely reactive to attackers dnatactively pounding the LWOL
network with bad communications. Figure 5.6 has alreadyified HPB’s ability to suc-
cessfully identify new attackers.

With respect to poohit rate, LWOLSs generally achieve a much higher hit rate than
GWOLs. We interpret this result to follow a pattern similaiNewton’s first Law of Motion.
An examination of LWOL hit rates suggests that an attackeo vghsending unwanted
communications to a target will tend to continue sending am@d communications to
the target. With respect to our experimentation with the fiti/btrategy, we observe that
with regard to the DShield dataset, the Hybrid hit rate isagily bounded below the best-
performing list, GWOL or LWOL.

Regardindow severityblacklist entries, we believe one potential key selectideion
in formulating a final blacklist could be that of evaluatingtrées relative to the apparent
benignness or aggressiveness of their historical traffiepes. With respect to evaluat-
ing thebenignnessf a potential blacklist entry, this question is partictyaelevant in the
case of global blacklist publication. In practice, forntida of the DShield blacklist re-
quires special care to avoid including benign sources tieahecidentally logged by many
contributors. For example, web crawlers and Internet nreasent services must be regu-
larly removed by hand prior to the publication of the DShi@d@/OL. While such filtering
should also be considered for the other lists, such cargyisably less important as these
lists are constructed individually per contributor netilwotnlike the GWOL that may be
incorporated by tens of thousands of users, an accidertaision of a benign address in
the LWOL or HPB would not produce an unwanted large-scalearhp

Prioritizing aggressiveness network communication patterns has the potential to pro-
vide an important selection criterion in final blacklist fiohtion. Here we assume that
most perimeter defenses would like to achieve as much gvadgossible in incorporating
highly malicious entries and entries that also have a higlvatuility of being exercised.
With respect to DShield-derived blacklist entries, the @&hentries provide enough con-
text per log entry to support at least three metrics for dmiah attack severity heuristics.
In proposing these metrics we will borrow criteria that hal®ady been proposed in the

32



Candidate| Source| DPort | Weighted
Address| Count | Count | Average | Target Port N-Gram

024.044.038.*| 92 3 3.0 [ 1434-udp 38566-tcp 1434-tcp ]
222.091.041.*| 86 5 2.8 [ 1434-udp 32459-udp 8672-udp 445-tcp 1434-tcp |
084.016.230.*| 8 2 2.8 [ 80-tcp 22-tcp ]
219.081.144.*| 12 8 2.2 [ 13102-udp 139-tcp 3127-tcp 445-tcp 25-tcp 6662-tcp ... |
218.092.241.*| 98 4 1.8 [ 3621-udp 1433-udp 1433-tcp 6192-udp ]
210.021.119.* 9 2778 1.0 [ 20056-tcp 59990-tcp 56333-tcp 47196-tcp 5543-tcp ... |
204.094.057.*| 43 1 4.0 [ 445-tcp ]
071.123.126.*| 52 2 4.0 [ 1434-udp 1434-tcp |
066.190.000.*| 39 3 3.2 [ 80-tcp 445-tcp 443-tcp |
065.214.044.*| 56 3 3.0 [ 53-udp 80-tcp 1026-udp ]
059.114.213*| 19 5 2.8 [ 139-tcp 32459-udp 3127-tcp 9963-udp 445-tcp |
061.216.052.%| 24 7 2.8 [ 135-tcp 139-tcp 6883-udp 8672-udp 3127-tcp 445-tcp ...]
058.052.129.*| 115 4 25 [ 1434-udp 32459-udp 6567-udp 1434-tcp |
219.116.071.*| 3 2 25 [ 1434-udp 32606-tcp |
061.229.070.*| 13 7 2.4 [ 135-tcp 139-tcp 445-tcp 25-tcp 12198-tcp 38566-udp ...]
060.176.088.*| 78 7 2.3 [ 1434-udp 35496-udp 32459-udp 445-tcp 1434-tcp ...]
216.127.253.*| 57 6 15 [ 6346-tcp 38566-tcp 445-tcp 49200-udp 12198-udp 306{p4-tc
058.215.065.*| 54 948 1.4 [ 968-tcp 844-tcp 1086-tcp 1065-tcp 897-tcp 250-tcp ...]
219.129.216.*| 68 981 1.1 [ 4504-tcp 281-tcp 6701-tcp 897-tcp 822-tcp 6452-tcp ... |
061.129.051.*| 65 6611 1.0 [ 20383-tcp 21577-tcp 8147-tcp 22343-tcp 22578-tcp ...]
218.007.120.*| 83 2329 1.0 [ 56333-tcp 59990-tcp 23831-tcp 10846-tcp 53833-tcp ...]

Table 6.1: Example HPB Blacklist Candidates

context of dynamic signature generation [10] and malicipot scan analysis [8] for use

in similar threat-level prioritization:

e Source Diversity:a measurement of the number of unique contributors that have

logged the source address. A higher measurement impliesegr®® address range

sweeping.

e Target Port Diversity:a measurement of the number of unique target ports reported

against this attacker. A higher measurement implies gréataddress range sweep-

ing.

33




e Weighted Target Port Scan Metrica weighted aggregate or average measurement

of unique destination, where greater weight may be basedawrkvulnerable ports
(e.g., ports well associated with exploit usage), less gidpced on network ser-
vices UDP/TCP port ranges, and lesser weight placed oncapipln ports above
1024.

Table 6.1 illustrates a set of attacker addresses that veégeted for one contributor
blacklist by the HPB strategy (a subset of entries that warguely identified by the HPB
in one example blacklist calculation). Each row identifiasm&ue candidate source LAN
for possible inclusion into the contributor's blacklist.ol@dmn 2 indicates the number of
other contributors (within DShield’s full contributor ppavho also reported the candidate
source address during the training window (the higher thislmer, the more aggressively
this address is sweeping the Internet address space). €d@undicates the number of
unique target ports that the candidate address has beervedhsmnnecting to among all
contributors (one contributor has port scanned more th@ Arique target ports). Column
4 reports the average weighted port scan value for the catedid With respect to the
vulnerable port list metric used in Table 6.1, we used thiefiohg set of target ports:

Vulnerable Port Set: 53-tcp, 42-tcp, 80-tcp, 135-tcp, 139-tcp, 445-tcp,559-1£025-
tcp, 1433-tcp, 14434-tcp, 2082-tcp, 2100-tcp, 2745-tG852tcp, 3127-tcp, 3306-
tcp, 3410-tcp, 5000-tcp, 5554-tcp, 6101-tcp, 6129-tcpep)-11768-tcp, 15118-
tcp, 27374-tcp, 65506-tcp, 53-udp, 69-udp, 137-udp, 14fdl-4444-tcp, 9995-tcp,
9996-tcp, 17300-tcp, 3140-tcp, 903-tcp

We envision that the application of a severity-based ergigcsion process could be
incorporated at any of several stages in the blacklist fémtion process. One possibility
is to incorporate attacker severity assessment as a pigfiltstep that occurs in selecting
which sources are considered during the HPB training windawnother possibility is to
allow all sources to be considered during the training wimdmut to incorporate a severity
metric into the HPB scoring algorithm itself. Finally, weutd also incorporate a severity-
based entry selection as a final processing step in decidiighventries of a candidate
HPB list of size N will be published to the final delivered kst of size M, where M<

34



N. For example, using a combination of the metrics suggesede, one could prioritize
source addresses that appear to exhibit malware chastict®r{i.e., the example use of
such metrics is already documented in [8, 10]).

35



Chapter 7

The DShield Implementation

DShield began providing a global worst offender blackliathe from its inception, in the
form of a text file. The text file was designed to be human reladab well as easy to
parse by simple scripts. A number of open source as well asnasoial firewalls use this
list. The highly predictive blacklist will be offered in amesimilar form. To provide this
customized blacklist, a credential exchange occurs (dgsmlibelow), followed by a release
of a URL containing the contributor’s updated HPB list. HRBs calculated daily for the
entire contributor base, not on demand (avoiding poteBtx® conditions).

A DShield user is provided with an account to the DShield vtelia order to review
reports. To ease the automatic retrieval of a user’s HPBklisacwe will not require the
user to log in via our standard web-based procedure. Ingfeadser can generate a unique
token. This random hexadecimal sequence will be appenddwtdRL and identify the
user. This token has a number of advantages over using tlve username and pass-
word. For example, the user may still change the passwotibutithaving to change the
information used by automated scripts retrieving the bisck

To provide further protection of the integrity and confidality of the HPB blacklist,
it will be offered via https. A detached PGP signature candbeeved in case https is not
available or not considered sufficient to prove the authbéntof the list.

The HPB blacklist itself uses a simple tab delimited fornTdte first column identifies
the network address, and the second column provides thesktAdditional columns can

36



be used to provide more information about the respectivendgr, like type of attacks seen,
name of the network, and country of origin. Initially, suakdéional columns are intended
for human review of the blacklist. Comments may be addededthacklist. All comments
start with a# mark. The following is a sample HPB blacklist template:

# DShield Customized HPB Blacklist

# created 2007-01-19 12:13:14 UTC

# Sor userid 11111

# Some rights reserved, DShield Inc.,
#

#

#

Creative Commons Share Alike License

License and Usage Info: http://www.dshield.org/blockli st.html
#
1.111 255.255.255.0 test network
2222 255.255.255.0 another test: network does not exist
# End of list

The URL for DShield’s current GWOL remains the following URL
https://feeds.dshield.org/block.txt.

The PGP signature for the current list is available from tilefing URL:
http://feeds.dshield.org/block.txt.asc.

The user will request the personalized HPB using the folhgwWwiRL.:
http://feeds.dshield.org/hpblock6de8e...a6a.txt.

The respective PGP signature will be retrieved using tHeviihg URL.:
http://feeds.dshield.org/hpblock6de8e...a6a.txt.asc

Blocklists will be updated once a day or whenever proceskiag allows. The files
retrieved by the user are static. The processing to genarbtecklist is too large to be
done on demand. Using static files will prevent an obvious Bar@lition by downloading
the same file multiple times. Instead of using a PGP signatugemay opt to use HTTPS.
However, HTTPS will protect only the data on the wire. It wilit protect the pregenerated
list on the server.

37



Chapter 8

Conclusion

We offer a new argument to help motivate the field of securéalbotative data sharing,
by demonstrating that people who collaborate in blackbsirulation can produchkighly
predictive blacklists.We introduce a blacklist formulation algorithm that is bésm an
extension of Google’s PageRank link analysis. Experinngntin a large corpus of real
DShield data, we demonstrate that HPB has higher attackeatks, bettenew attacker
prediction quality, and long-term performance stabiliurthermore, we show that such
advantage exists for different blacklist lengths, as welbavariety of prediction window
sizes. We also suggest methods for assessing the sevestuafe attacker behavior to
prioritizing the sources on the list. Our HPB algorithm hasideveloped into a real-world
application, which is now posted to the DShield.org webfiteall repository contributors
to use.

38



Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

G. Adomavicius and A. Tuzhilin. Toward the next genevatof recommender sys-
tems: A survey of the state-of-the-art and possible exbeissIEEE Trans. on Knowl-
edge and Data Engineerind7(6):734—749, 2005.

John S. Breese, David Heckerman, and Carl Kadie. Engbianalysis of predic-
tive algorithms for collaborative filtering. IRroceedings of the 14th Conference on
Uncertainty in Artificial Intelligence (UAI-98)ages 43-52, 1998.

Sergey Brin and Lawrence Page. The anatomy of a large-$ugertextual Web
search engineComputer Networks and ISDN Syste®3(1-7):107-117, 1998.

US CERT. CERT Advisory CA-2003-04: MS SQL Server Worrhttp:/www.
cert.org/advisories/CA-2003004.html , 2003.

Mark Humphrys. The Internet in the 1980$ittp://www.computing.dcu.
ie/"humphrys/net.80s.html , 2007.

Google Incorporated. List of Blacklistshttp://directory.google.com/
Top/Computers/Internet/Abuse/Spam/Blacklist%s/ , 2007.

Google Incorporated. Live-Feed Anti-Phishing Blaskli http://sb.google.
com/safebrowsing/update?version=goog-black-url:1:1 , 2007.

[8] Jaeyeon Jung, Vern Paxson, Arthur W. Berger, and HaalBahnan. Fast Portscan

Detection Using Sequential Hypothesis TestinglHEE Symposium on Security and
Privacy 2004 Oakland, CA, May 2004.

39



[9] S. Katti and B. Krishnamurthy. Collaborating Againstr@mon Enemies. IiPro-
ceedings of the ACM SIGCOMM/USENIX Internet Measurementefence October
2005.

[10] Hyang-Ah Kim and Brad Karp. Autograph: Toward autonggtdistributed worm
signature detection. IISENIX Security Symposiypages 271-286, 2004.

[11] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalath Andrew Tomkins. Rec-
ommendation systems: A probabilistic analysidournal of Computer and System
Sciences63:42—-61, 2001.

[12] Greg Linden, Brent Smith, and Jeremy York. Amazon.ceeommendations: ltem-
to-item collaborative filteringlEEE Internet Computing7(1):76—80, 2003.

[13] M. Locasto, J. Parekh, A. Keromytis, and S. Stolfo. Tagecollaborative security and
P2P intrusion detection. IRroceedings of the 2005 IEEE Workshop on Information
Assurance and Securjtyune 2005.

[14] P. Ruoming, V. Yegneswaran, P. Barford, V. Paxson, anBdterson. Characteris-
tics of Internet Background Radiation. Rroceedings of ACM SIGCOMM/USENIX
Internet Measurement Conferenéactober 2004.

[15] Johannes Ullrich. DShield Global Worst Offender Listhttps://feeds.
dshield.org/block.txt

[16] Wikipedia. The first DNS Blacklist. http://en.wikipedia.org/wiki/
DNSBL, 2007.

[17] V. Yegneswaran, P. Barford, and S. Jha. Global intrusietection in the DOMINO
overlay system. IfProceedings of Network and Distributed Security Sympasiuime
2004.

[18] V. Yegneswaran, P. Barford, and J. Ullrich. Interndtusions: global characteristics
and prevalence . IRroceedings of ACM SIGMETRIC&ine 2003.

40



