
April 12, 2007

Highly Predictive Blacklists

Jian Zhang and Phillip Porras

first.lastname@sri.com

SRI International

Johannes Ullrich

SANS Institute

This material is based upon work supported through the U.S. Army Research Of-

fice under the Cyber-TA Research Grant No. W911NF-06-1-0316. The views ex-

pressed in this document are those of the author(s) and do not necessarily repre-

sent the official position of the sponsor.
Computer Science Laboratory � 333 Ravenswood Ave. � Menlo Park, CA 94025 � (650) 326-6200 � Facsimile: (650) 859-2844

Abstract

We propose a radically different approach to source addressblacklist formulation, which we

call highly predictive blacklisting.We present a probabilistic attacker ranking algorithm for

blacklist formulation for use in centralized collaborative log sharing infrastructures, such

as the DShield.org security log repository. Our objective is not simply to identify a global

list of prolific attackers, which is among the most widely used strategies today. Rather, we

construct a custom blacklist per contributor that reflects the most probable set of attackers

that will attack the target contributor over a prediction window that may last several days

into the future. Our attacker rank equation, inspired by hyperlink document link analysis,

prioritizes candidate blacklist entries based on the how frequently they are observed by

other peer contributors who share significant attacker overlap with the target blacklist user.

Through an examination of real DShield datasets we conduct acomparative assessment of

the highly predictive blacklist strategy versus three competing blacklist formulation meth-

ods. Our results show that highly predictive blacklist entries consistently yield much higher

attacker hit rates for the vast majority of contributors in the repositories. In addition, the hit

rate quality of these blacklists can last multiple days intothe future. We discuss a practical

implementation of our highly predictive blacklist algorithm, which we have posted to the

DShield.org website for use by DShield log contributors.

Contents

1 Introduction 2

2 The Basics of Source Address Blacklisting 5

3 Toward a Predictive Blacklisting Strategy 7

4 A Common-Source-Based Address Scoring Algorithm 10

4.1 Basic Scoring Algorithm .10

4.2 From Basic to Full Algorithm .. 17

4.3 Complexity Analysis . 18

5 Comparative Analysis of Blacklisting Strategies 21

5.1 Hits Improvement . 22

5.2 Prediction of New Attacks .25

5.3 Performance Consistency .. 26

5.4 Blacklist Length . 28

5.5 Training and Prediction Window Sizes 28

6 Examining Selection Strategies for Final Blacklist Publication 31

7 The DShield Implementation 36

8 Conclusion 38

Bibliography

1

Chapter 1

Introduction

For nearly as long as we have been detecting malicious activity in networks, we have been

compiling and sharingblackliststo identify and filter the most prolific perpetrators. Source

blacklists are a fundamental notion in collaborative network protection. Many blacklists

focus on a variety of illicit activity. Network and email address blacklists have been around

since even the earliest stages of the Internet [5, 16]. However, as the population size and

personal integrity of Internet users have continued to growin inverse directions, so too has

grown the popularity and diversity of blacklisting as a strategy for self-protection. Recent

examples include source blacklists to help networks detectand block the most prolific port

scanners and attack sources, SPAM producers, and phishing sites, to name a few [6,7,15].

Today, sites such as DShield.org not only compileglobal worst offender lists(GWOLs)

of the most prolific attack sources, they regularly post firewall parsable filters of these lists

to help the Internet community fight back [15]. DShield represents a centralized approach

to blacklist formulation, with more than 1000 contributorsproviding a daily perspective

of the malicious background radiation that plagues the Internet [14, 18]. The published

GWOL captures a snapshot of those class C subnets whose addresses have been logged

by the greatest number of contributors. Another common practice is for a local network

to create its ownlocal worst offender list(LWOL) of those sites that have attacked it the

most. LWOLs have the property of capturing repeat offendersthat are indeed more likely

to return to the local site in the future. However, LWOLs are by definition completely

2

reactiveto new encounters with previously unseen attackers. On the other hand, while the

GWOL strategy has the potential to inform a local network of highly prolific attackers, it

also has the potential to provide a subscriber with a list of addresses that will simply never

be encountered.

We propose a radically different approach to blacklist formulation in the context of

large-scale log sharing repositories, such as DShield. Ourobjective is to construct a cus-

tomized blacklist per repository contributor that reflectsthe most probable set of addresses

that may attack the contributor over aprediction windowthat may last several days. We

refer to our algorithm as thehighly predictive blacklist(HPB) strategy. Under the HPB

strategy, for every contributor, we enumerate all sources of reported attackers and assign

each of them a ranking score relative to its probability to attack the contributor in the fu-

ture. The ranking score is based on observation of the particular attacker’s past activities, as

well as the collective attack patterns exhibited by all other attackers in the alert repository.

This is another key difference between our HPB algorithm andthe other blacklist strategies.

In the compilation of GWOL and LWOL or their like, each blacklist entry is selected solely

based on its own attack history. In contrast, our HPB strategy takes a collective approach.

HPB attacker selection is influenced by both an attacker’s own attack patterns and the full

set of all attack patterns found within the dataset. In particular, we consider the correla-

tions among the contributors introduced by the collection of attackers, i.e., the amount of

attacker overlap between each pair of contributors. Our ranking score cares not only how

many contributors have reported the attacker but also who gave the reports. It favors attack-

ers reported by many contributors that are also correlated (have many common attackers)

with the contributor under consideration. The choice of contributor correlation for use in

our collective attacker ranking algorithm is inspired by recent work of Katti et al. [9].

We tested our HPB strategy using more than 600 million DShield log entries produced

by more than 1000 independent contributors from April to June 2006. We generate HPBs

using DShield datasets and contrast perfornamce to that of corresponding GWOLs and

LWOLs. Our results show that for most contributors (more than 80%), HPBs entries exhibit

much higher hit counts over a multiday prediciton window than both GWOL and LWOL.

In the best case, one HPB of length 200 successfully predicted 195 attacks in comparison

3

to only two addresses from the GWOL. We further compared HPB with a hybrid blacklist

consisting of half GWOL and half LWOL. Our experiment shows asimilar result: the HPB

algorithm exhibits a higher hit count for most of the contributors. Our experiments also

show that HPB’s performance is consistent over time, and these advantages remain stable

across various list lengths and predict windows.

Our contributions are the following. We present an alternative approach to blacklist for-

mulation, which is substantially different from that of thewell-established worst offender

list strategy. We view the amount of hits on the blacklist as an additional metric to quan-

tify the degree to which a given blacklist is exercised in protecting a site from unwanted

connections. We propose a collective approach for ranking attackers that considers not

only individual attackers’ past activity but also the attack patterns shown by the collection

of attackers. To compute these rankings, we present a novel system based on Google’s

PageRank [3]. We also propose the use of various attacker severity metrics to perform

final blacklist entry selection and present a practical implementation of our highly predic-

tive blacklist algorithm, which we have now posted to the DShield website for use by all

DShield log contributors.

This technical report is organized as follows. We summarizecommon network ad-

dress blacklisting practices in Section 2. In Section 3 we present the general intuition of

our approach, and discuss how it differs from traditional methods of blacklisting. Sec-

tion 4 presents the details of our predictive score algorithm, and Section 5 presents our

experimental results on extensive assessments of HPBs versus other competing blacklist

generation strategies. We suggest methods for generating afinal blacklist from HPBs by

down-selecting using various attacker severity metrics inSection 6. Section 7 describes the

DShield implementation of our HPB system, and Section 8 summarizes our key conlusions.

4

Chapter 2

The Basics of Source Address

Blacklisting

Today, source address blacklisting a set of known-bad IP addresses is a common tech-

nique applied to defend a given network from the worst of the worst. Different approaches

are used to compile these blacklists. Most often, such blacklists are either based on lo-

cal data (e.g., data from an Intrusion Detection System (IDS)), or they use data collected

from larger sets of sensors. More recently, researchers have proposed peer-based attack

sharing strategies to create fast reaction blacklists thatmight help in combating malware

epidemics [13,17].

Blacklists derived from local data are inherently reactive, in that they cannot include

sources that the local site has not yet encountered. Local blacklisting relies on the assump-

tion that it is possible to identify reconnaissance activity, and to then block the sources of

such activity before they are able to launch actual attacks.This may work in some cases, but

in many cases the attack is launched from a different source than the source of the probes,

or no probing takes place at all (an attack is launched blindly, such as in the case of MySQL

Slammer [4]). Even though these sources that launch the attack may have been seen by

other networks, they are new to the particular local network. A reactive local blacklist,

therefore, would not be able to defend against them.

One may alleviate this problem by using global blacklists derived from data supplied

5

by a large set of contributors across the Internet. A common approach to global blacklist

formulation is to simply populate the blacklist with the most prolific offenders, i.e., sources

that have attacked the greatest number of targets. However,this strategy may miss certain

significant attackers that prefer to attack the same set of networks that have been proven to

provide vulnerable hosts in the past. These attackers are not necessarily very prolific, as they

focus on the known vulnerable networks. The particular attacks may change, but attackers

will probe the same networks as new vulnerabilities are incorporated into the attacker’s tool

set. This behavior is in particular common in bots. Bots typically include a range of attack

tools that are controlled from a central location, like an IRC server or web server. With any

new tool made available to the bot, the same networks tend to be rescanned using this new

vulnerability.

More importantly, significant pragmatic limitations are inherent in all source address

blacklisting strategies. Packet filtering devices are ableto hold only a limited number of

rules. Depending on the device, this filter set size may rangefrom a few dozen to a few

hundred. Thus, the cost of blacklist filters is not just measured in compute cycles and the

potential for accidental blocking of good traffic, but in theopportunity costin exhausting

the firewall filter set with entries that are unlikely to be exercised. The central goal of our

highly predictive blacklist system is to provide a filter setthat will be exercised with much

higher probability than other contemporary blacklists while amending the aforementioned

problems.

6

Chapter 3

Toward a Predictive Blacklisting

Strategy

With today’s wide deployment of Internet sensors and collaborative log repositories, there

is greater potential than ever to develop blacklists that truly provide a global and adaptive

perspective of emerging attack sources. This richness in data provides not only the founda-

tion to produce an effective blacklist, but to open a new way to think about how blacklists

might be formulated.

The problem of formulating blacklists has certain similarity to therecommendation sys-

temproblem. Recommendation systems have been intensively studied and widely adopted

by many commercial websites [1, 2, 11, 12]. A website compiles a collection of its users’

activities such as their purchase or browsing behaviors. The recommendation system then

processes this data set and predicts each individual user’sfuture activity. The predictions

are based on both the individual user’s history and the preferences induced by the activities

of the whole collection of users. The prediction is presented to the user as a recommen-

dation or is used by the website to prepare resources for the anticipated activity. A typical

recommendation system can be found on Amazon.com, where it provides suggestions, such

as “users who have purchased book X also find book Y highly appealing.”

Both blacklist-formulation systems and recommendation systems depend on history

data to make predictions. However, the traditional way of generating a blacklist does not

7

utilize the full information in the history data. For example, GWOL assumes the more

prolific the attacker, the more likely it will attack in the future. This prediction uses only

information about the particular attacker, i.e., its target diversity. It does not consider the

patterns introduced by the other (possibly similar) attackers.

Suppose we have a collection of history data on the attacks made by a large set of

sources. Consider two attackersA1 andA2 in this collection that both attacked 20 targets.

Our task is to assist networkC in deciding which of the attackers,A1 or A2, C should

choose to block with higher priority. With the traditional GWOL approach, because the

two sources attacked the same number of targets, we will treat them equally. Such deci-

sion making does not fully consider the information contained in the data collection. If we

utilize the full information, we may be able to make a more intelligent decision. For ex-

ample, lettargets(A1) denote the set of targets attacked byA1 andtargets(A2) the set of

targets attacked byA2. Let us assumetargets(A1) andtargets(A2) have no intersection.

Suppose after examining the collection of attack data, we find that many sources that at-

tacked some networks intargets(A1) also came toC but very few that attacked networks

in targets(A2) hit C. In other words,C shares many common (overlap) attackers with

networks intargets(A1) but not those intargets(A2). A recommendation system that

utilized this information would then suggest thatC put higher priority onA1 thanA2.

Therefore, similarity among the targets determined by their common attackers can be

as useful in making blacklists as the individual attacker’sown history. We are interested

in the relationship between target networksX andY in the form of “many attackers who

targetX often also targetY ”. Note that this relationship is transitive. LetX s Y denote

the attacker overlap relationship betweenX andY . If X s Y andY s Z holds, then when

we formulate a blacklist forZ, we assert that an attacker who comes toX should be given

some favor comparing to an attacker that has no connection withZ.

We use a graph to represent the above overlap relation (i.e.,the “s” relationship) among

networks. An attacker’s activity can be modeled as a random walk through our overlap

relations graph. Using the attacker’s history and such a random walk, we explore a new

scoring system for selecting entries for customized contributor blacklists. For each attacker

and each target network, the system produces a score that is proportional to the probability

8

estimation of the attacker attacking the network. The blacklist for a network then consists

of the attackers that have the top scores for that network.

9

Chapter 4

A Common-Source-Based Address

Scoring Algorithm

In describing our Highly Predictive Blacklisting algorithm for formulating source address

blacklists, we start with a basic algorithm. Although it lacks consideration for certain de-

tails, the basic algorithm carries the essence of our HPB strategy. We then extend the basic

algorithm to a full algorithm by adding the considerations for the omitted details. Finally

we briefly discuss the complexity of our algorithm.

4.1 Basic Scoring Algorithm

The heart of our blacklisting system is the scoring algorithm. In formulating a blacklist

for a contributor, it assigns scores to each attacker that are proportional to our estimation

that the attacker will attack the contributor. Here, attackers represent class C addresses.

We will use the terms “attacker” and (attack) “source” in an interchangeable way. The

contributors supply data to the log repository. They are thevictims of the attacks reported

in the repository. We will also use the terms “contributor” and “victim” interchangeably.

We uses andv to denote the source and the victim of an attack, respectively. Our algorithm

generates a customized blacklist per contributor (victim). We useRs(v) to denote the score

for attackers with respect to a victim (blacklist consumer)v. Rs(v) is a sum of two ranking

10

scores:RP s(v) andRIs(v). RP s(v) is an estimation ofs’s attack probability given 1)s’s
past activities involving other victims, and 2) information on similarities among victims

compiled over a collection of attack data.RIs(v) is the estimation ofs’s attack probability

based ons’s previous activity involving onlyv itself. We first describe how we computeRP s(v) and then we continue to the calculation ofRIs(v).
It has been shown that there are correlations among attack victims [9]. In a collection

of Internet-scale attack activities, we often can see that not all the attack victims are equal.

For some pairs of victims, attacks that targeted one victim tend to also attack the other. For

other pairs, there is no such relationship. We refer to the pair of victims in the former case

ascorrelated victims. Among the correlated pairs of victims, the strength of correlation

may differ from pair to pair. We illustrate this using a running example in Table 4.1. We

will use this example throughout the description of our system.v1 v2 v3 v4 v5s1 X Xs2 Xs3 X X Xs4 X Xs5 Xs6 X Xs7 X

Table 4.1: Attack Table

In this example, we have five victims (v1 to v5) and seven attack sources (s1 to s7).
We will refer to Table 4.1 as anattack table. The rows of the table represent the sources,

and the columns represent the victims. An “X” in an attack table cell indicates that the

corresponding source has reportedly attacked the corresponding victim. Victims may be

attacked by multiple sources. For a pair of victimsvi andvj , the set of sources that attackvi may overlap with the set of sources that attackvj . For now, we will treat the amount

of such overlap as the strength of correlation between victims vi andvj . (This is simply

for illustration. Our algorithm uses a value modified from such overlap to indicate the

11

correlation strength, which we will discuss later.) For example, v1 andv2 may be said to

share strong correlation (two overlaps) relative tov1 andv3 andv5 who share zero overlaps.

To estimate probabilities of which an attacker may attack a victim in the future, it is

natural to consider the correlations among the victims. In our running example, althoughs2
ands7 have attacked the same number of victims, from the viewpointof v1, we can make

the estimation thats2 is more likely to attack thans7, becauses2 has attackedv2, which

is closely correlated withv1. On the other hand,s7 attackedv5, which has no correlation

with v1. For better estimation of the attack probabilities, one mayuse information beyond

“direct” correlation. For example, consider the sources5 and compare it tos7. Both sources

attacked only one victim. None of their victims have a correlation withv1. However, forv1,s5 ands7 are not equal. One may view the correlation as atransitiverelationship. Notice

thatv2 correlates withv1, andv3 correlates withv2. A pathv3 s v2 s v1 connectss5 withv1. Using this form of reasoning, one can estimate thats5 is more likely to attackv1 thans7.
We model the correlation relationship between victims by acorrelation graph. The

correlation graph is a weighted directed graphG = (V;E). The nodes in the graph are the

victims, i.e.V = fv1; v2; : : :g. There is an edge from nodevi to nodevj if vi is correlated

with vj . The weight on the edge is proportional to the strength of this correlation. Figure 4.1

shows the correlation graph for our running example. (We will discuss how we obtain

the edge weight later.) We can use the correlation graph to make estimations on attack

probabilities. Suppose we have an estimation on sources’s probability of attacking victimvi. Following the outgoing edges ofvi, a fraction of this probability can be distributed to

the neighbors ofvi in the graph. Each neighbor receives a share of this probability that is

proportional to its strength of correlation withvi (i.e., proportional to the weight of the edge

from vi to that neighbor.) Supposevj is one of these neighbors in the correlation graph. A

fraction of the probability received byvj is then further distributed, in the similar fashion,

to its neighbors. The propagation of probability continuesuntil the estimations for each

victim reach a stable state.

Such a probability-propagation process can be simulated bya random walk on the cor-

relation graph: a source walks on the correlation graph, going from one node to another by

12

Figure 4.1: Correlation Graph of Our Running Example

following the edges in the graph. When at a node, the source chooses an outgoing edge to

follow with a probability proportional to the weight on thatedge (i.e., proportional to the

strength of correlation between the two victims connected by the edge). Similar types of

random walk have been applied in other probability propagation and estimation systems,

for example, Google’s PageRank [3]. The PageRank system ranks webpages using a score

that is related to the probablity that a particular webpage may be visited. Based on the

PageRank system, we develop an algorithm to estimate attackprobabilities given a victimv and an observed set of attackers. The estimates then determine the value ofRP s(v) for

each attackers in the set.

We first give a brief description of the PageRank system. LetPR(i) be the ranking

score for webpagei. LetLT (i) be the set of webpages that contain links to pagei. Denote

byNL(i) the number of outgoing links on pagei. The PageRank score is determined byPR(i) = (1� �) + � Xj2LT (i) 1NL(j)PR(j)
where� < 1 is a damping factor that decides how far the probability froma node can

propagate.

We modify this ranking function to estimate the attack probabilities. LetP s(v) be an

estimate proportional to the total probability thats attacksv. Let Wij be the correlation

strength from victimvj to vi. We define

13

P s(vi) = Bs(vi) + �XWij � P s(vj) (4.1)

whereBs(vi) is an initial estimation based on whethers attacksvi in the attack table. Given

a fixed sources, we will have an equation in the same form as Eq. 4.1 for every victim vi.
The sets ofP s(vi) andBs(vi) form vectors, which we denote byPs andBs respectively.

(We use boldface for vectors and matrices and normal font forscalar values.) The set of

equations for differentvi can then be expressed in a matrix form:Ps = Bs + �WPs (4.2)

Given the vectorBs and the matrixW, the system of linear equations in Eq. 4.2 can be

solved to obtain the valuesP s(vi). The sources’s first score for victimvi,RP s(vi), is then

defined to beRP s(vi) = P s(vi) � Bs(vi). (We needRP s(vi) to be a score that predicts

future attacks.Bs(vi) represents attacks in the past. We therefore removeBs(vi) fromP s(vi) to obtain the ranking scoreRP s(vi).) For each sources, we will have a system of

linear equations in the same form as Eq. 4.2. Solutions to each system of equations give us

the corresponding source’s ranking scores for each victimvi.
The vectorBs and the matrixW are two important components in Eq. 4.2. We now

describe how to construct them from the attack tables. SinceBs(vi) reflects whethers
attacksvi in the attack table, we can simply define it to be the following:Bs(vi) = (1, if s attackedvi;

0, otherwise: (4.3)

The entryWi;j in matrixW reflects the strength of correlation between victimsi andj.
For simplicity, in our previous illustration, we used the amount of overlap between sources

that attackedvi and that attackedvj as the measure of the correlation between the two

victims. We call this thesimple correlation. Figure 4.2 shows a simple correlation matrix

for our running example. (We have five victims in the running example. Therefore, the

correlation matrix is a5� 5 matrix. Entry(j; i) is the strength of correlation from victimi
to j.)

14

0BBBBBBB� 0 2 0 1 02 0 1 1 00 1 0 1 01 1 1 0 00 0 0 0 0
1CCCCCCCA

Figure 4.2: Simple Correlation Matrix of Our Running Example

The actual measure of correlation needs to consider more factors. For example, consider

the following two cases. In Case 1, victimvi sees attacks from 500 sources andvj sees 10

sources. Five sources attack bothvi andvj . In Case 2, there are also five common sources.

However,vi sees 100 sources whilevj sees 10. Although the number of overlapping sources

is the same in both cases, the strength of correlation is different. Because in the first case,vi sees more sources, it is expected that there should be more overlap. Therefore, the five

common sources in Case 1 should be equivalent to just one common source in Case 2.

Similarly, if vi sees 100 sources butvj sees five, and there are still five common sources.

These five common sources should be counted as 10 comparing tothose in Case 2.

We use a statistical measure to standardize the amount of overlaps. Assume that there

are a total ofN sources. Letni be the number of sources seen byvi, nj the number seen

by vj, andnij the number of common sources. The probability forvj to see a source isnj out ofN . If vi andvj are statistically independent, among theni sources seen byvi,
we expect to seeni � njN common sources. We define the standardization factor (std) to

bestd(i; j) = nijni�njN , which is essentially the ratio of the actual overlap over the expected

overlap. Our standardized correlation is then obtained by scaling the simple correlation

using the standardization factor, i.e. standardized correlation betweenvi andvj is std(i; j) �nij. Figure 4.3 shows the standardized correlation matrix for our running example.

The matrixW in Eq. 4.2 is obtained by normalizing the columns of the standardized

correlation matrix. In Figure 4.1, we show the correlation graph for our running example.

The weight on the edge from nodei to nodej is the value of the entry(j; i) in the matrixW.

15

0BBBBBBB� 0 3:5 0 1:75 03:5 0 0:583 0:875 00 0:583 0 1:167 01:75 0:875 1:167 0 00 0 0 0 0
1CCCCCCCA

Figure 4.3: Standardized Correlation Matrix of Our RunningExample

So far we have described how to compute the scoreRP s(v). Recall that a sources’s ranking score for a victimv is the sum of two scoresRP s(v) andRIs(v). We now

continue to the computation ofRIs(v). RIs(vi) reflectss’s attack probability based on its

previous activities that targetvi. We calculateRIs(vi) using a formula similar to Eq. 4.1.

In particular, we have RIs(vi) = B̂s(vi) + �ŴiiRIs(vi) (4.4)

The coefficientsŴii reflects the probability that a previous attacker ofvi will come

back. We calculate this value in the following way. LetT1 andT2 be two consecutive

time windows. We estimatêWii by the fraction of sources that attackedvi in T1 that also

attack inT2. Similar toBs(vi), B̂s(vi) reflects our observation ons’s previous attack onvi.
Therefore, it can also be determined using Eq. 4.3.

With Eq. 4.1 and Eq. 4.4, we can compute the two scoresRP s(v) andRIs(v), re-

spectively. Our final ranking score for sources with respect to victimv is thenRs(v) =RP s(v) + RIs(v). We also described how the coefficients in the equations can be deter-

mined. Putting these together, we have a basic system to rankattackers. Our final system

is an extension of this basic system that incorporates more detailed considerations on the

sources’ past activities.

16

4.2 From Basic to Full Algorithm

The extensions discussed here were derived from our experiences in iteratively applying

our ranking system to the DShield repository. In doing so we discovered various patterns in

contributor log production that we now reflect into our scheme.

The first extension is a modification of the vectorBs(vi) in Eq. 4.1, which is defined by

Eq. 4.3. This definition considers whether a sources attacks victimv but does not reflect

when the attack happens. For example, when we predict a source’s attack, we should take

into consideration the case in which the source’s last attack occurred yesterday from the

case where the attacker was last observed 10 days ago. In the former case, the attacker

may be still active while in the latter case, it may not. To reflect this, we modifyBs(vi) by

multiplying it with a decay factords(vi) = 2�k, wherek is the delta between the timevi
last appeared and the start of the time window for which we plan to make our prediction.

The second extension modifieŝBs(vi). We consider the number of times that sources
has attackedvi as well as the time when these attacks happened. Supposes madet attacks

to vi. The i-th attack happened at time�ki. Note that we consider the beginning of the

prediction time window as time zero. Since we are counting backward into the history, we

put a minus sign in front ofki. The new value of̂Bs(vi) is thenB̂s(vi) = log(Pt1 2�ki).
In the case wheret = 0 (i.e., s did not attackv in the past) we set̂Bs(vi) to zero. Recall

that B̂s(vi) is an initial estimation based ons’s previous attack onvi. Here we assert that

a source that has attacked 500 times in the past is not 5 times more probable to come back

(to the same victim) than a source that has attacked 100 times. Therefore, in the new value

for B̂s(vi), we use a logarithmic form of the decayed sum instead of the sum itself. This

reflects the observation that two very frequent attackers share a quite close probability of

coming back.

Notice that we make different modifications toBs(vi) andB̂s(vi). We observed that an

attacker that has attacked victimvi many times in the past is not necessarily more likely to

attack another victimvj. Therefore, we considered the number of previous attacks onvi in

formulatingB̂s(vi), but not forBs(vi). It also shows that the amount of attack probability

derived from the number of past attacks does not propagate. This is the main reason that

our final ranking score is a sum of two scores: one that is related to the attack probability

17

propagated from other victims and the other focusing on the local attack probability.

Finally, we extend the attack table to include time information. The entries in the basic

attack table are boolean values, indicating whether sources attacked victimv. We use sets

as entries in the extended attack table, i.e., the set of attacks froms to v that happened at

different times. LetTij andTik be two entries in the extended attack tableT . When we

measure the attack overlap betweenvj andvk, we will include the intersection of the two

setsTij andTik. For example, with the basic attack tableTB, if TBij = TBik = 1, we add 1

to the attack overlap. With the extended attack table, we addjTij \ Tikj to the overlap. One

may construct the extended attack table using different granularity. For example, the setTij may include every individual attack event. Alternatively,one may discretize the time by

hours and aggregate attacks (fromsi to vj) that happened within an hour into a single attack

in Tij. Coarse granularity may be preferred because the attack table is used only to obtain

the correlation matrix, which then affects the value ofRP s(v). A granularity at hourly

level is equivalent to asserting that ifs attacked victimsi andj within one hour, the two

attacks are correlated. Otherwise, they are not. Because ofthis, one should not distinguish

individual attacks, but rather should use coarse granularity at hourly or even daily intervals.

Applying the above extensions to our basic system, we obtainour final source ranking

system. We summarize the whole system in Algorithm 1.

4.3 Complexity Analysis

Because our HPB algorithm is constructed from collections of alert data, we need to go

through the data collection at least once. Hence, there is always the amount of complexity

that is linear to the size of the alert data. That is, letN(data) be the number of alerts in the

data collection; we have a minimum complexity ofO(N(data)). Our discussion will focus

on other complexity incurred by the algorithm besides this linear-time requirement.

We denote byN(s) andN(v) the number of sources and victims in the data collection,

respectively. Recall that victims are the contributors that supply data to the alert collection;N(v) is actually the number of such contributors. We can expectN(v) to be in the order

of thousands. Unfortunately,N(s) is much larger and can be in the tens of millions. We

obtain the coefficients in Eq. 4.2 and Eq. 4.4 by going throughthe collection of alert data

18

and doing simple accounting. For example, the weight matrixW used in Eq. 4.2 requires

the most work to construct. To obtain this matrix, we record every overlapped attack while

going through the alert data and then perform standardization and normalization. The latter

steps require us to go through the whole matrix, which results inO(N(v)2) complexity.

Besides going through the data, the most time consuming stepin the ranking process

is the computation that solves the linear equations in Eq. 4.2. At first glance, because

for each sources, we have a linear system determined by Eq. 4.2, it seems that we need

to solveN(s) linear systems. This can be expensive asN(s) is very large. A further

investigation shows that the solution to Eq. 4.2 is(I� �W)�1 �Bs whereI is the identity

matrix. WhileBs is different per sources, the term(I � �W)�1 is the same for alls.
Therefore, we need to compute it only once, which requiresO(N(v)3) time by brute force

or O(N(v)2:376) using more sophisticated methods [?]. BecauseBs is sparse, once we

have(I� �W)�1, the total time to obtain the ranking scores for all the sources and all the

victims isO(N(v) � N(data)). AssumingN(v)2 is much smaller thanN(data), the total

complexity to generate HPBs isO(N(v) �N(data)). Note that this captures the complexity

to generate HPBs for all the victims. For a data set that contains a billion records contributed

by a thousand sensors, generating a thousand HPBs only requires several trillion operations

(additions and multiplications). This can be easily handled by modern computers. In fact,

in our experiments, withN(data) in the tens of millions andN(v) on the order of one

thousand, it takes less than 30 minutes to generate all the HPBs on an Intel Xeon 3.6 GHz

machine.

19

Algorithm 1: Generate HPB for victimv
HPB GEN(BL Length,v)

(1) foreach source s

(2) RP s RANK SCORE1(v, s)

(3) RIs RANK SCORE2(v, s)

(4) Rs RP s +RIs
(5) Sorts in descending order according to their rank scoreRs.
(6) return BL Length ofs with topRs
RANK SCORE1(v,s)

(1) Obtain attack overlap from the attack table;

(2) Generate the standardized correlation matrix;

(3) Generate the final correlation matrixW;

(4) ConstructBs;
(5) Solve linear system in Eq. 4.2;

(6) return RP s(v)
RANK SCORE2(v,s)

(1) EstimateŴii;
(2) CalculateB̂s;
(3) Solve Eq. 4.4

(4) return RIs(v)
20

Chapter 5

Comparative Analysis of Blacklisting

Strategies

To test our proposed HPB algorithm, we have conducted a battery of experiments using the

DShield.org firewall and IDS log repository. We examined a collection of approximately

600 million DShield records, collected from more than 1700 contributors between April and

June 2006. The prerequisite for our HPB algorithm to producemeaningful predictive results

is to have it first compute correlation relationship among the contributors. In this sense,

HPB blacklist production is not applicable to contributorswho have submitted very few

reports (DShield has contributors who hand-select contributions to the repository, providing

very few alerts from which to compute a correlation relationship). We therefore exclude

those contributors who we find effectively have no correlation with the wider contributor

pool or simply have too few alerts to produce meaningful results. For this analysis, we

found that we could compute correlation relationships for 1,088 contributors.

In the experiments, we generate HPB using data for a certain time period and then test

the HPB on data from the time window following this period. Wecall the period used for

producing HPB thetraining windowand the period for testing theprediction window. In

practice, the training period represents a snapshot of the most recent history of the reposi-

tory used to formulate the HPB of a contributor who is then expected to use the HPB for the

length of the prediction window. The sizes of these two windows are not necessarily equal.

21

We will first describe experiments that use 5-day lengths forboth the training window and

the prediction window.

As a baseline for comparing the performance of the HPB method, we compute its per-

formance relative to the standard DShield-produced GlobalWorst Offender List (GWOL) [15].

In addition, we compare our HPB performance to that of local worst offender lists (LWOLs),

which we compute individually for all contributors in our comparison set. For the purpose

of our comparative assessment, we fixed the length of all three competing blacklist strate-

gies to exactly 200 entries. However, after we present our comparative performance results,

we will then continue our investigation by analyzing how window size and blacklist length

affect HPB’s predictive performance.

5.1 Hits Improvement

Data in the prediction window are used to test how many sources that are on a blacklist

actually hit the contributor. We call this thehit number(H) for that blacklist. For each

contributor, a blacklist that produces a high hit number is said to provide stronger predic-

tive power than a blacklist that produces a lower hit number.We compare the hit numbers

produced by our HPB algorithm to those of GWOL and LWOL over our 1088 DShield

contributors. The hit numbers of the three types of blacklists vary from contributor to con-

tributor. Table 5.1 lists the mean and median of the hit numbers over our 5-day prediction

window interval for our three competing blacklist strategies.

Mean Median

HPB 59 47

LWOL 49 36

GWOL 31 30

Table 5.1: Summary of Hit Numbers

We now break down the performance results of these three blacklist strategies on the

individual contributor. For each contributorv, there is a hit number for HPB, GWOL,

and LWOL. LetHHPB(v), HGWOL(v), andHLWOL(v) be the respective hit numbers.

22

To compare HPB to another blacklist, we define two quantitiesfor each contributor. One

measure is theImprovement Value(IV), which we define as the HPB hit number minus the

hit number on the other list. That is, the IV over GWOL for contributor v isHHPB(v) �HGWOL(v), and the IV over LWOL isHHPB(v) � HLWOL(v). A positive IV means

HPB has produced a better hit number than the other list, while a negative IV means HPB

performs worse.

A second comparative measure is theHit Number Ratio(HR), which is simply the

ratio of an HPB hit number over the other blacklist hit number. For example, the HR over

GWOL for v is HHPB(v)HGWOL(v) . If the other list hit number is zero we define HR to be the HPB

hit number, and if both hit numbers are zero we set HR to one. AnHR of value 1 means

the HPB predicts the same amount of hits as the other list. Thelarger the HR, the better

the HPB’s prediction performance. In our experiments, we find that IV and HR differ from

contributor to contributor. We plot the distribution of these values when comparing HPB to

the other blacklists.

In Figure 5.1, we compare HPB to GWOL. The left panel of the figure plots the dis-

tribution of the IV values for the 1088 contributors. The x-axis represents IV values and

the y-axis represents the number of contributors that produce the corresponding IV. The

dash-dotted line indicatesx = 0 or no improvement, where anything to the left of this line

represents worse HPB performance. We see that for most contributors, the IV is positive.

HPBs have more hits than GWOL. The largest IV reaches 193. Forthis contributor, the

GWOL has very few hits while almost all sources in the HPB werefound to have attacked

in the prediction window.

The two panels on the right of Figure 5.1 plot the HR (ratio of HPB’s hit number over

GWOL’s hit number) distribution. The distribution is highly skewed. Therefore, we sep-

arate the largest 5% of HR values from the rest of 95% and plot the two sets of values in

different ways. The upper right panel shows the distribution of the top 5% of HR values

in the histogram. (The dash-dotted line in this panel indicatesx = 1.) We see that for all

the contributors in this panel, HPB achieves an HR at least 6 times the HR of GWOL. The

largest ratio is 138. In the lower right panel, we plot the cumulative distribution function

(CDF) for the rest of the HRs. (Again, in this panel, the dash-dotted line showsx = 1.) For

23

0 50 100 150
0

50

100

150

200

250

300

350

400

Improvement

of

 C
on

tri
bu

to
rs

HPB v.s. GWOL

0 50 100
0

20

40

60

of

 C
on

tri
bu

to
rs

Distribution (top 5%)

0 2 4 6 8
0

50

100

Hit Number RatioCu
m

ula
tiv

e
Pe

rc
en

ta
ge CDF (Bottom 95%)

Figure 5.1: Hit Number Comparison of HPB and GWOL

each valuex of HR, CDF plots the percentage of HRs that is belowx. The x-axis represents

HR values, and y-axis represents percentage. A point(x; y) on the CDF curve indicates that

there arey percent HRs that have values smaller thanx. (Or there are100� y percent HRs

with values larger thanx.) From the CDF plot, we see that for only a very small percent-

age (less than 10) contributors, HPB performs worse than GWOL. For about 30% of the

contributors, HPB doubles the hit number. For half the contributors, HPB improved the hit

number by more than 50%. For about 70% of the contributors, HPB has 20% more hits

than GWOL.

In Figure 5.2 we compare HPB hit numbers to those of LWOL. The data are plotted

in the same way as in Figure 5.1. Overall, HPB demonstrates a performance advantage

over LWOL. The IV and HR values also exhibit similar distribution. However, comparing

Figures 5.2 and 5.1, we see that HPB’s advantage over LWOL is not as large as its advantage

over GWOL. For example, from the CDF in the lower right panel of Figure 5.2, we see that

at the 50% (median) level, the HPB has about 20% more hits thanLWOL, less than the 50%

it achieved with GWOL.

In preparing this analysis, one apparent observation is that the GWOL and LWOL strate-

gies produce very complementary lists of attackers. That is, by definition GWOL focuses

on prolific Internet-wide IP sweepers, while LWOL focuses onsources that have specifi-

cally concentrated their attacks (i.e., on the LWOL owner inparticular). Because the two

24

−20 0 20 40 60
0

50

100

150

200

Improvement

of

 C
on

tri
bu

to
rs

HPB v.s. LWOL

0 2 4 6 8
0

20

40

60

of

 C
on

tri
bu

to
rs

Distribution (top 5%)

0.5 1 1.5 2
0

50

100

Hit Number RatioCu
m

ula
tiv

e
Pe

rc
en

ta
ge CDF (Bottom 95%)

Figure 5.2: Hit Number Comparison of HPB and LWOL

lists have different focuses, one may wonder whether HPB outperforms GWOL and LWOL

because HPB considered both types of sources while GWOL and LWOL target only an

individual type.

We believe this is part of the reason that HPB has more prediction power. However, in

studying this question we find that the HPB algorithm produces much more than a naive

combination of GWOL and LWOL. To illustrate this point, we now compare the hit num-

bers of our HPB method to that of ahybrid blacklist. Recall that for the purpose of our

performance assessment, we have set all blacklists to a fixedlength of 200 entries. We now

consider a hybrid blacklist that is composed of the top 100 sources of the GWOL and fill

the remainder of entries with the top non-overlapping sources from the LWOL. Figure 5.3

plots the comparison of HPB against this new hybrid list. Thefigure shows that for most of

the contributors, HPB performs better than the hybrid list.

5.2 Prediction of New Attacks

One clear motivating assumption in secure collaborative defense strategies is that partici-

pants have the potential to prepare themselves from attacksthat they have not yet encoun-

tered. We will say that anew attackoccurs when a contributor produces a DShield log

entry from a source that this contributor has never before reported. In this experiment, we

25

0 50 100
0

50

100

150

200

250

300

350

400

450

Improvement

of

 C
on

tri
bu

to
rs

HPB v.s. Hybrid

0 5 10
0

20

40

60

of

 C
on

tri
bu

to
rs

Distribution (top 5%)

0 0.5 1 1.5 2
0

50

100

Hit Number RatioCu
m

ula
tiv

e
Pe

rc
en

ta
ge CDF (Bottom 95%)

Figure 5.3: Hit Number Comparison of HPB and A Hybrid Blacklist

show that HPB analysis provides contributors a potential topredict more new attacks than

GWOL. (LWOL is not considered, since by definition itonly includes attackers that are

actively hitting the LWOL owner.) For each contributor, we construct two new HPB and

GWOL lists with equal length of 200 entries, such that no entries have been reported by

the contributor during our training window. We call these lists HPB-local (HPB minus lo-

cal) and GWOL-local (GWOL minus local), respectively. Figure 5.4 compares HPB-local

and GWOL-local on their ability to predict on new attack sources for the local contributor.

These hit number plots demonstrate that HPB-local providessubstantial improvement over

the predictive value of GWOL.

5.3 Performance Consistency

The results in the above experiments all show that the HPB algorithm provides an increase

in hit number performance across the majority of all contributors. We then ask the following

question: is the HPB predictive performance consistent fora given contributor over time?

In this experiment, we investigate this performance consistency question.

We use a 45 days DShield data. We divide the 45 days into nine time windows,T0; T1; : : : ; T8. We generate blacklists from data in time windowTi�1 and test them on

data inTi. For each contributorv, we compare HPB with GWOL and obtain eight IV val-

26

0 50 100
0

100

200

300

400

500

600

700

Improvement

of

 C
on

tri
bu

to
rs

HPB−local v.s. GWOL−local

0 10 20 30
0

20

40

60

of

 C
on

tri
bu

to
rs

Distribution (top 10%)

0 1 2 3
0

50

100

Hit Number RatioCu
m

ula
tiv

e
Pe

rc
en

ta
ge CDF (Bottom 90%)

Figure 5.4: HPB-local Predicts More New Attacks Than GWOL-local

ues for windowT1 to T8. We denote themIV s(v) = fIV1(v); IV2(v); : : : IV8(v)g. We

then define a consistency index (CI) for each contributor. IfIVi(v) � 0, we say that HPB

performs well forv in window i. Otherwise, we say that HPB performs worse. CI is the

absolute value of the difference between the number of windows in which HPB performs

well and the ones in which HPB performs poorly, i.e.,CI(v) = abs(jfp 2 IV s(v) : p �0gj � jfp 2 IV s(v) : p < 0gj), whereabs(x) is the absolute value ofx. (Note that we

focus on HPB’s performance consistency in this experiment.For a particular contributor,

HPB may perform well or worse. However, as long as it perform well (worse) for all the 8

windows, we say that it is consistent. Therefore, we use the absolute value in the definition

of CI. Being consistent does not necessarily mean that HPB predicts more hits.) Clearly, if

HPB has a consistent performance along time for contributorv, CI(v) should be close to

8. Otherwise, if the performance of HPB flip-flops, its CI value will be close to zero. Fig-

ure 5.5 plots the CDF of HPB’s CI values with different contributors. We see that for more

than 80% of the contributors, HPB’s performance is extremely consistent. They all have

CI value 8. For more than 90% of the contributors, HPB demonstrates fairly good consis-

tency. Only with very few contributors, the performance switches back and forth. Further

investigation shows that flip-flop contributors involve cases where HPB and GWOL have

hit numbers in very close proximity. In such a case, a small change in hit number can switch

HPB from good to bad.

27

0 2 4 6 8
0

20

40

60

80

100

Performance Index

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

Figure 5.5: Cumulative Distribution of Consistency Index

The consistency result is quite useful. It implies that given a few cycles of computing

HPB and GWOL for a given user, we can provide an informed recommendation for the user

as to which list he or she should adopt over a longer term. Thatis, our experiment suggests

that if HPB performed well in the past month, it will tend to continue performing well over

at least several subsequent weeks. Therefore, the users maybenefit from HPB in this case.

5.4 Blacklist Length

In this experiment, we vary the length of the blacklists to be50, 100, 200, 500, and 1000. We

then compare the hit numbers of HPB, GWOL, and LWOL. Because in all the experiments,

the IV and HR values for different contributors display similar distributions, we will simply

plot the medians of the hit numbers of HPB, GWOL, and LWOL whenwe present the

results. In Figure 5.6, for each choice of list length, we plot the median of the hit numbers

for HPB, GWOL, and LWOL across the contributors. The result shows that HPB has an

advantage for all choices of length value.

5.5 Training and Prediction Window Sizes

We now investigate how far into the future the blacklists canmake good predictions and how

different training window sizes affect HPB’s hit numbers. The former helps to determine

28

0 500 1000
0

0.2

0.4

0.6

Blacklist length

M
ed

ia
n

of
 H

it
R

at
e GWOL

LWOL
HPB

Figure 5.6: Hit Numbers of HPB, GWOL, and LWOL with DifferentLengths

how often we need to recompute the blacklist, and the latter helps to select the right amount

of history data as the input to our system. The left panel of Figure 5.7 shows the median

of the hit number of HPB, GWOL, and LWOL on day1; 2; 3; : : : ; 31 in a large prediction

window. All lists are generated using data from a 5-day window prior to the prediction win-

dow. We see that for all blacklists, the number of hits decreases along time. HPB always

has an advantage during the whole prediction window. (Thereis a dip around day 5 because

the total number of attacks reported by DShield is significantly less on that particular day.

Nevertheless, HPB still performs better in this case.) The right panel of Figure 5.7 plots

hit-number medians for five HPBs that are generated using training windows of size 2, 5,

10, 20, and 30 days. The hit numbers are obtained in a 5-day prediction window. We see

that the hit numbers are roughly the same for HPBs generated with training windows of

different sizes. At first glance, this seems strange. But it turns out to be a natural property

of our HPB algorithm. Two major factors affect the generation of HPBs. One is the cor-

relation pattern among victims (contributors). Previous work [9] has shown that the victim

correlation patterns are quite stable. They remain the samefor a long time. Therefore, the

correlation graph obtained from different training windows may be very similar. The other

more important factor is that we used an exponential decay function in computingB andB̂ in Eq. 4.1 and Eq. 4.4. Attackers that have been dormant for longer time periods will be

assigned extremely small scores and therefore are effectively excluded from consideration

29

for HPBs.

0 10 20 30
0

10

20

30

40

50

60

Training Window Size (days)

M
ed

ian
 o

f H
it N

um
be

r

0 10 20 30
0

5

10

15

20

25

Day in Prediction Window

M
ed

ian
 o

f H
it N

um
be

r GWOL
LWOL
HPB

Figure 5.7: Effect of Training Window and Prediction WindowSize on HPB’s Hit Number

30

Chapter 6

Examining Selection Strategies for

Final Blacklist Publication

No matter what the blacklist formulation strategy, one mustrecognize that most perimeter

boundaries will have a finite filter set size. In practice we observe that these filter sets may

range from a few dozen to several hundred entries. Thus, whendeciding which entries to in-

corporate into a perimeter defense, the opportunity cost for incorporating poor-performing

rules can be significant. Poor-performing rules may have several interpretations, depending

on one’s perspective. Poor-performing rules may include rules that exhibit

poor timing: filtering rules that are inserted well after an attacker has had time to saturate

the network with unwanted communications

poor hit rate: rules that identify malicious sources that are rarely if ever encountered by

the blacklist user

low severity: rules that filter sources whose traffic patterns would suggest benign rather

than malicious communications (e.g., selecting to filter web crawlers rather than

sources that are actively targeting known malware ports).

With respect topoorly timedblacklist entries, worst offender lists generally suffer from

the fact that a source does not achieve candidacy into the list until it has produced a suf-

ficient mass of communication. GWOL rules have the tendency to incorporate only those

31

sources that have already achieved mass proliferation. LWOLs are particularly limited by

poor timing, as they are entirely reactive to attackers thatare actively pounding the LWOL

network with bad communications. Figure 5.6 has already quantified HPB’s ability to suc-

cessfully identify new attackers.

With respect to poorhit rate, LWOLs generally achieve a much higher hit rate than

GWOLs. We interpret this result to follow a pattern similar to Newton’s first Law of Motion.

An examination of LWOL hit rates suggests that an attacker who is sending unwanted

communications to a target will tend to continue sending unwanted communications to

the target. With respect to our experimentation with the Hybrid strategy, we observe that

with regard to the DShield dataset, the Hybrid hit rate is typically bounded below the best-

performing list, GWOL or LWOL.

Regardinglow severityblacklist entries, we believe one potential key selection criterion

in formulating a final blacklist could be that of evaluating entries relative to the apparent

benignness or aggressiveness of their historical traffic patterns. With respect to evaluat-

ing thebenignnessof a potential blacklist entry, this question is particularly relevant in the

case of global blacklist publication. In practice, formulation of the DShield blacklist re-

quires special care to avoid including benign sources that are accidentally logged by many

contributors. For example, web crawlers and Internet measurement services must be regu-

larly removed by hand prior to the publication of the DShieldGWOL. While such filtering

should also be considered for the other lists, such care is arguably less important as these

lists are constructed individually per contributor network. Unlike the GWOL that may be

incorporated by tens of thousands of users, an accidental inclusion of a benign address in

the LWOL or HPB would not produce an unwanted large-scale impact.

Prioritizing aggressivenessin network communication patterns has the potential to pro-

vide an important selection criterion in final blacklist publication. Here we assume that

most perimeter defenses would like to achieve as much overlap as possible in incorporating

highly malicious entries and entries that also have a high probability of being exercised.

With respect to DShield-derived blacklist entries, the DShield entries provide enough con-

text per log entry to support at least three metrics for developing attack severity heuristics.

In proposing these metrics we will borrow criteria that havealready been proposed in the

32

Candidate Source DPort Weighted

Address Count Count Average Target Port N-Gram

024.044.038.* 92 3 3.0 [1434-udp 38566-tcp 1434-tcp]

222.091.041.* 86 5 2.8 [1434-udp 32459-udp 8672-udp 445-tcp 1434-tcp]

084.016.230.* 8 2 2.8 [80-tcp 22-tcp]

219.081.144.* 12 8 2.2 [13102-udp 139-tcp 3127-tcp 445-tcp 25-tcp 6662-tcp ...]

218.092.241.* 98 4 1.8 [3621-udp 1433-udp 1433-tcp 6192-udp]

210.021.119.* 9 2778 1.0 [20056-tcp 59990-tcp 56333-tcp 47196-tcp 5543-tcp ...]

204.094.057.* 43 1 4.0 [445-tcp]

071.123.126.* 52 2 4.0 [1434-udp 1434-tcp]

066.190.000.* 39 3 3.2 [80-tcp 445-tcp 443-tcp]

065.214.044.* 56 3 3.0 [53-udp 80-tcp 1026-udp]

059.114.213.* 19 5 2.8 [139-tcp 32459-udp 3127-tcp 9963-udp 445-tcp]

061.216.052.* 24 7 2.8 [135-tcp 139-tcp 6883-udp 8672-udp 3127-tcp 445-tcp ...]

058.052.129.* 115 4 2.5 [1434-udp 32459-udp 6567-udp 1434-tcp]

219.116.071.* 3 2 2.5 [1434-udp 32606-tcp]

061.229.070.* 13 7 2.4 [135-tcp 139-tcp 445-tcp 25-tcp 12198-tcp 38566-udp ...]

060.176.088.* 78 7 2.3 [1434-udp 35496-udp 32459-udp 445-tcp 1434-tcp ...]

216.127.253.* 57 6 1.5 [6346-tcp 38566-tcp 445-tcp 49200-udp 12198-udp 30614-tcp]

058.215.065.* 54 948 1.4 [968-tcp 844-tcp 1086-tcp 1065-tcp 897-tcp 250-tcp ...]

219.129.216.* 68 981 1.1 [4504-tcp 281-tcp 6701-tcp 897-tcp 822-tcp 6452-tcp ...]

061.129.051.* 65 6611 1.0 [20383-tcp 21577-tcp 8147-tcp 22343-tcp 22578-tcp ...]

218.007.120.* 83 2329 1.0 [56333-tcp 59990-tcp 23831-tcp 10846-tcp 53833-tcp ...]

Table 6.1: Example HPB Blacklist Candidates

context of dynamic signature generation [10] and maliciousport scan analysis [8] for use

in similar threat-level prioritization:� Source Diversity:a measurement of the number of unique contributors that have

logged the source address. A higher measurement implies greater IP address range

sweeping.� Target Port Diversity:a measurement of the number of unique target ports reported

against this attacker. A higher measurement implies greater IP address range sweep-

ing.

33

� Weighted Target Port Scan Metrics:a weighted aggregate or average measurement

of unique destination, where greater weight may be based on known vulnerable ports

(e.g., ports well associated with exploit usage), less weight placed on network ser-

vices UDP/TCP port ranges, and lesser weight placed on application ports above

1024.

Table 6.1 illustrates a set of attacker addresses that were selected for one contributor

blacklist by the HPB strategy (a subset of entries that were uniquely identified by the HPB

in one example blacklist calculation). Each row identifies aunique candidate source LAN

for possible inclusion into the contributor’s blacklist. Column 2 indicates the number of

other contributors (within DShield’s full contributor pool) who also reported the candidate

source address during the training window (the higher this number, the more aggressively

this address is sweeping the Internet address space). Column 3 indicates the number of

unique target ports that the candidate address has been observed connecting to among all

contributors (one contributor has port scanned more than 2700 unique target ports). Column

4 reports the average weighted port scan value for the candidates. With respect to the

vulnerable port list metric used in Table 6.1, we used the following set of target ports:

Vulnerable Port Set: 53-tcp, 42-tcp, 80-tcp, 135-tcp, 139-tcp, 445-tcp,559-tcp, 1025-

tcp, 1433-tcp, 14434-tcp, 2082-tcp, 2100-tcp, 2745-tcp, 2535-tcp, 3127-tcp, 3306-

tcp, 3410-tcp, 5000-tcp, 5554-tcp, 6101-tcp, 6129-tcp, 0-tcp, 11768-tcp, 15118-

tcp, 27374-tcp, 65506-tcp, 53-udp, 69-udp, 137-udp, 1434-udp, 4444-tcp, 9995-tcp,

9996-tcp, 17300-tcp, 3140-tcp, 903-tcp

We envision that the application of a severity-based entry selection process could be

incorporated at any of several stages in the blacklist formulation process. One possibility

is to incorporate attacker severity assessment as a prefiltering step that occurs in selecting

which sources are considered during the HPB training window. Another possibility is to

allow all sources to be considered during the training window, but to incorporate a severity

metric into the HPB scoring algorithm itself. Finally, we could also incorporate a severity-

based entry selection as a final processing step in deciding which entries of a candidate

HPB list of size N will be published to the final delivered blacklist of size M, where M<
34

N. For example, using a combination of the metrics suggestedabove, one could prioritize

source addresses that appear to exhibit malware characteristics (i.e., the example use of

such metrics is already documented in [8,10]).

35

Chapter 7

The DShield Implementation

DShield began providing a global worst offender blacklist early from its inception, in the

form of a text file. The text file was designed to be human readable as well as easy to

parse by simple scripts. A number of open source as well as commercial firewalls use this

list. The highly predictive blacklist will be offered in a very similar form. To provide this

customized blacklist, a credential exchange occurs (discussed below), followed by a release

of a URL containing the contributor’s updated HPB list. HPBsare calculated daily for the

entire contributor base, not on demand (avoiding potentialDoS conditions).

A DShield user is provided with an account to the DShield website in order to review

reports. To ease the automatic retrieval of a user’s HPB blacklist, we will not require the

user to log in via our standard web-based procedure. Instead, the user can generate a unique

token. This random hexadecimal sequence will be appended tothe URL and identify the

user. This token has a number of advantages over using the user’s username and pass-

word. For example, the user may still change the password without having to change the

information used by automated scripts retrieving the blacklist.

To provide further protection of the integrity and confidentiality of the HPB blacklist,

it will be offered via https. A detached PGP signature can be retrieved in case https is not

available or not considered sufficient to prove the authenticity of the list.

The HPB blacklist itself uses a simple tab delimited format.The first column identifies

the network address, and the second column provides the netmask. Additional columns can

36

be used to provide more information about the respective offender, like type of attacks seen,

name of the network, and country of origin. Initially, such additional columns are intended

for human review of the blacklist. Comments may be added to the blacklist. All comments

start with a# mark. The following is a sample HPB blacklist template:

DShield Customized HPB Blacklist

created 2007-01-19 12:13:14 UTC

Sor userid 11111

Some rights reserved, DShield Inc.,

#

Creative Commons Share Alike License

License and Usage Info: http://www.dshield.org/blockli st.html

#

1.1.1.1 255.255.255.0 test network

2.2.2.2 255.255.255.0 another test: network does not exist

End of list

The URL for DShield’s current GWOL remains the following URL:

https://feeds.dshield.org/block.txt.

The PGP signature for the current list is available from the following URL:

http://feeds.dshield.org/block.txt.asc.

The user will request the personalized HPB using the following URL:

http://feeds.dshield.org/hpblock6de8e...a6a.txt.

The respective PGP signature will be retrieved using the following URL:

http://feeds.dshield.org/hpblock6de8e...a6a.txt.asc .

Blocklists will be updated once a day or whenever processingload allows. The files

retrieved by the user are static. The processing to generatea blocklist is too large to be

done on demand. Using static files will prevent an obvious DoScondition by downloading

the same file multiple times. Instead of using a PGP signature, we may opt to use HTTPS.

However, HTTPS will protect only the data on the wire. It willnot protect the pregenerated

list on the server.

37

Chapter 8

Conclusion

We offer a new argument to help motivate the field of secure collaborative data sharing,

by demonstrating that people who collaborate in blacklist formulation can producehighly

predictive blacklists.We introduce a blacklist formulation algorithm that is based on an

extension of Google’s PageRank link analysis. Experimenting on a large corpus of real

DShield data, we demonstrate that HPB has higher attacker hit rates, betternew attacker

prediction quality, and long-term performance stability.Furthermore, we show that such

advantage exists for different blacklist lengths, as well as a variety of prediction window

sizes. We also suggest methods for assessing the severity ofsource attacker behavior to

prioritizing the sources on the list. Our HPB algorithm has been developed into a real-world

application, which is now posted to the DShield.org websitefor all repository contributors

to use.

38

Bibliography

[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender sys-

tems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowl-

edge and Data Engineering, 17(6):734–749, 2005.

[2] John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis of predic-

tive algorithms for collaborative filtering. InProceedings of the 14th Conference on

Uncertainty in Artificial Intelligence (UAI-98), pages 43–52, 1998.

[3] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web

search engine.Computer Networks and ISDN Systems, 30(1-7):107–117, 1998.

[4] US CERT. CERT Advisory CA-2003-04: MS SQL Server Worm.http:/www.

cert.org/advisories/CA-2003004.html , 2003.

[5] Mark Humphrys. The Internet in the 1980s.http://www.computing.dcu.

ie/˜humphrys/net.80s.html , 2007.

[6] Google Incorporated. List of Blacklists.http://directory.google.com/

Top/Computers/Internet/Abuse/Spam/Blacklist%s/ , 2007.

[7] Google Incorporated. Live-Feed Anti-Phishing Blacklist. http://sb.google.

com/safebrowsing/update?version=goog-black-url:1:1 , 2007.

[8] Jaeyeon Jung, Vern Paxson, Arthur W. Berger, and Hari Balakrishnan. Fast Portscan

Detection Using Sequential Hypothesis Testing. InIEEE Symposium on Security and

Privacy 2004, Oakland, CA, May 2004.

39

[9] S. Katti and B. Krishnamurthy. Collaborating Against Common Enemies. InPro-

ceedings of the ACM SIGCOMM/USENIX Internet Measurement Conference, October

2005.

[10] Hyang-Ah Kim and Brad Karp. Autograph: Toward automated, distributed worm

signature detection. InUSENIX Security Symposium, pages 271–286, 2004.

[11] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan,and Andrew Tomkins. Rec-

ommendation systems: A probabilistic analysis.Journal of Computer and System

Sciences, 63:42–61, 2001.

[12] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations: Item-

to-item collaborative filtering.IEEE Internet Computing, 7(1):76–80, 2003.

[13] M. Locasto, J. Parekh, A. Keromytis, and S. Stolfo. Towards collaborative security and

P2P intrusion detection. InProceedings of the 2005 IEEE Workshop on Information

Assurance and Security, June 2005.

[14] P. Ruoming, V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson. Characteris-

tics of Internet Background Radiation. InProceedings of ACM SIGCOMM/USENIX

Internet Measurement Conference, October 2004.

[15] Johannes Ullrich. DShield Global Worst Offender List.https://feeds.

dshield.org/block.txt .

[16] Wikipedia. The first DNS Blacklist. http://en.wikipedia.org/wiki/

DNSBL, 2007.

[17] V. Yegneswaran, P. Barford, and S. Jha. Global intrusion detection in the DOMINO

overlay system. InProceedings of Network and Distributed Security Symposium, June

2004.

[18] V. Yegneswaran, P. Barford, and J. Ullrich. Internet intrusions: global characteristics

and prevalence . InProceedings of ACM SIGMETRICS, June 2003.

40

